
DATA STRUCTURES USING C++

&
ELECTRICAL AND ELECTRONICS

LABORATORY MANUAL

B.TECH

(II YEAR – I SEM)
(2017-18)

DEPARTMENT OF
INFORMATION TECHNOLOGY

MALLA REDDY COLLEGE OF ENGINEERING &
TECHNOLOGY

(Autonomous Institution – UGC, Govt. of India)
Recognized under 2(f) and 12 (B) of UGC ACT 1956

(Affiliated to JNTUH, Hyderabad, Approved by AICTE - Accredited by NBA & NAAC – ‘A’ Grade - ISO 9001:2015 Certified)

Maisammaguda, Dhulapally (Post Via. Hakimpet), Secunderabad – 500100, Telangana State, India

DATA STRUCTURES USING C++

LABORATORY MANUAL

B.TECH

(II YEAR – I SEM)
(2017-18)

DEPARTMENT OF
INFORMATION TECHNOLOGY

MALLA REDDY COLLEGE OF ENGINEERING &
TECHNOLOGY

(Autonomous Institution – UGC, Govt. of India)
Recognized under 2(f) and 12 (B) of UGC ACT 1956

(Affiliated to JNTUH, Hyderabad, Approved by AICTE - Accredited by NBA & NAAC – ‘A’ Grade - ISO 9001:2015 Certified)

Maisammaguda, Dhulapally (Post Via. Hakimpet), Secunderabad – 500100, Telangana State, India

DEPARTMENT OF INFORMATION TECHNOLOGY

Vision

 To acknowledge quality education and instill high patterns of

discipline making the students technologically superior and ethically

strong which involves the improvement in the quality of life in

human race.

Mission

 To achieve and impart holistic technical education using the best of

infrastructure, outstanding technical and teaching expertise to

establish the students into competent and confident engineers.

 Evolving the center of excellence through creative and innovative

teaching learning practices for promoting academic achievement to

produce internationally accepted competitive and world class

professionals.

PROGRAMME EDUCATIONAL OBJECTIVES (PEOs)

PEO1 – ANALYTICAL SKILLS

1. To facilitate the graduates with the ability to visualize, gather information,

articulate, analyze, solve complex problems, and make decisions. These are

essential to address the challenges of complex and computation intensive

problems increasing their productivity.

PEO2 – TECHNICAL SKILLS

2. To facilitate the graduates with the technical skills that prepare them for

immediate employment and pursue certification providing a deeper

understanding of the technology in advanced areas of computer science and

related fields, thus encouraging to pursue higher education and research based

on their interest.

PEO3 – SOFT SKILLS

3. To facilitate the graduates with the soft skills that include fulfilling the mission,

setting goals, showing self-confidence by communicating effectively, having a

positive attitude, get involved in team-work, being a leader, managing their

career and their life.

PEO4 – PROFESSIONAL ETHICS

To facilitate the graduates with the knowledge of professional and ethical

responsibilities by paying attention to grooming, being conservative with style,

following dress codes, safety codes, and adapting themselves to technological

advancements.

PROGRAM SPECIFIC OUTCOMES (PSOs)

After the completion of the course, B. Tech Computer Science and Engineering, the

graduates will have the following Program Specific Outcomes:

1. Fundamentals and critical knowledge of the Computer System:- Able to

Understand the working principles of the computer System and its components ,

Apply the knowledge to build, asses, and analyze the software and hardware

aspects of it .

2. The comprehensive and Applicative knowledge of Software Development:

Comprehensive skills of Programming Languages, Software process models,

methodologies, and able to plan, develop, test, analyze, and manage the

software and hardware intensive systems in heterogeneous platforms

individually or working in teams.

3. Applications of Computing Domain & Research: Able to use the professional,

managerial, interdisciplinary skill set, and domain specific tools in development

processes, identify the research gaps, and provide innovative solutions to them.

PROGRAM OUTCOMES (POs)

Engineering Graduates will be able to:
1. Engineering knowledge: Apply the knowledge of mathematics, science,

engineering fundamentals, and an engineering specialization to the solution
of complex engineering problems.

2. Problem analysis: Identify, formulate, review research literature, and analyze
complex engineering problems reaching substantiated conclusions using first
principles of mathematics, natural sciences, and engineering sciences.

3. Design / development of solutions: Design solutions for complex engineering
problems and design system components or processes that meet the
specified needs with appropriate consideration for the public health and
safety, and the cultural, societal, and environmental considerations.

4. Conduct investigations of complex problems: Use research-based knowledge
and research methods including design of experiments, analysis and
interpretation of data, and synthesis of the information to provide valid
conclusions.

5. Modern tool usage: Create, select, and apply appropriate techniques,
resources, and modern engineering and IT tools including prediction and
modeling to complex engineering activities with an understanding of the
limitations.

6. The engineer and society: Apply reasoning informed by the contextual
knowledge to assess societal, health, safety, legal and cultural issues and the
consequent responsibilities relevant to the professional engineering practice.

7. Environment and sustainability: Understand the impact of the professional
engineering solutions in societal and environmental contexts, and
demonstrate the knowledge of, and need for sustainable development.

8. Ethics: Apply ethical principles and commit to professional ethics and
responsibilities and norms of the engineering practice.

9. Individual and team work: Function effectively as an individual, and as a
member or leader in diverse teams, and in multidisciplinary settings.

10. Communication: Communicate effectively on complex engineering activities
with the engineering community and with society at large, such as, being able
to comprehend and write effective reports and design documentation, make
effective presentations, and give and receive clear instructions.

11. Project management and finance: Demonstrate knowledge and
understanding of the engineering and management principles and apply
these to one’s own work, as a member and leader in a team, to manage
projects and in multi disciplinary environments.

12. Life- long learning: Recognize the need for, and have the preparation and
ability to engage in independent and life-long learning in the broadest
context of technological change.

MALLA REDDY COLLEGE OF ENGINEERING &
TECHNOLOGY

Maisammaguda, Dhulapally Post, Via Hakimpet, Secunderabad – 500100

DEPARTMENT OF INFORMATION TECHNOLOGY

GENERAL LABORATORY INSTRUCTIONS

1. Students are advised to come to the laboratory at least 5 minutes before (to the

starting time), those who come after 5 minutes will not be allowed into the lab.
2. Plan your task properly much before to the commencement, come prepared to the lab

with the synopsis / program / experiment details.
3. Student should enter into the laboratory with:
a. Laboratory observation notes with all the details (Problem statement, Aim,

Algorithm, Procedure, Program, Expected Output, etc.,) filled in for the lab session.
b. Laboratory Record updated up to the last session experiments and other utensils (if

any) needed in the lab.
c. Proper Dress code and Identity card.
4. Sign in the laboratory login register, write the TIME-IN, and occupy the computer

system allotted to you by the faculty.
5. Execute your task in the laboratory, and record the results / output in the lab

observation note book, and get certified by the concerned faculty.
6. All the students should be polite and cooperative with the laboratory staff, must

maintain the discipline and decency in the laboratory.
7. Computer labs are established with sophisticated and high end branded systems,

which should be utilized properly.
8. Students / Faculty must keep their mobile phones in SWITCHED OFF mode during

the lab sessions. Misuse of the equipment, misbehaviors with the staff and systems
etc., will attract severe punishment.

9. Students must take the permission of the faculty in case of any urgency to go out ; if
anybody found loitering outside the lab / class without permission during working
hours will be treated seriously and punished appropriately.

10. Students should LOG OFF/ SHUT DOWN the computer system before he/she leaves
the lab after completing the task (experiment) in all aspects. He/she must ensure the
system / seat is kept properly.

 Head of the Department Principal

OBJECTIVES AND OUTCOMES

Objectives:

 To write and execute programs in C++ to solve problems using data

structures such as arrays, linked lists, stacks, queues, trees, graphs, hash

tables and search trees.

 To write and execute write programs in C++ to implement various sorting

and searching methods.

Outcomes:

 Ability to identify the appropriate data structure for given problem.

 Graduate able to design and analyze the time and space complexity of

algorithm or program.

 Ability to effectively use compilers includes library functions, debuggers

and trouble shooting.

Vision:

To acknowledge quality education and instill high patterns of discipline making the

students technologically superior and ethically strong which involves the

improvement in the quality of life in human race.

Mission:

To achieve and impart holistic technical education using the best of infrastructure,

outstanding technical and teaching expertise to establish the students into

competent and confident engineers.

Evolving the center of excellence through creative and innovative teaching learning

practices for promoting academic achievement to produce internationally accepted

competitive and world class professionals.

RECOMMENDED SYSTEM / SOFTWARE REQUIREMENTS:

1. Intel based desktop PC of 166MHz or faster processor with at least 64 MB RAM
and 100 MB free disk space.

2. turbo C++ compiler or GCC compilers

USEFUL TEXT BOOKS / REFERECES:

1. Data structures, Algorithms and Applications in C++, S.Sahni, University Press

(India) Pvt.Ltd, 2nd edition, Universities Press Orient Longman Pvt. Ltd.

2. Data structures and Algorithms in C++, Michael T.Goodrich, R.Tamassia and

.Mount, Wiley student edition, John Wiley and Sons.

3. Data structures using C and C++, Langsam, Augenstein and Tanenbaum, PHI.

MALLA REDDY COLLEGE OF ENGINEERING &
TECHNOLOGY

Maisammaguda, Dhulapally Post, Via Hakimpet, Secunderabad – 500100

DEPARTMENT OF INFORMATION TECHNOLOGY

DATA STRUCTURES USING C++ Lab Manual

List of programs

S.No Name of the program Page no Date Faculty
sign

1.
 Write a C++ programs to implement recursive and non
recursive i) Linear search ii) Binary search

1

2. Write a C++ programs to implement i) Bubble sort ii) Selection
sort iii) quick sort iv) insertion sort 6

3. Write a C++ programs to implement the following using an array.
a) Stack ADT b) Queue ADT

12

4.

Write a C++ programs to implement list ADT to perform following
operations a) Insert an element into a list.

 b) Delete an element from list
 c) Search for a key element in list
 d)count number of nodes in list

18

5. Write C++ programs to implement the following using a singly linked
list. Stack ADT b) Queue ADT

26

6 Write C++ programs to implement the deque (double ended queue)
ADT using a doubly linked list and an array.

32

7 Write a C++ program to perform the following operations:
 a) Insert an element into a binary search tree.
 b) Delete an element from a binary search tree.
 c) Search for a key element in a binary search tree.

38

8 Write C++ programs for implementing the following sorting methods:
Merge sort b) Heap sort

43

9 .Write C++ programs that use recursive functions to traverse the
given binary tree in a) Preorder b) in order and c) post order.

48

10 Write a C++ program to perform the following operations
a) Insertion into a B-tree b) Deletion from a B-tree

54

11 Write a C++ program to perform the following operations
a)Insertion into an AVL-tree b) Deletion from an AVL-tree

62

12 Write a C++ program to implement all the functions of a dictionary
(ADT)

70

Department of IT Page 1

Date Structures using C++ LAB 2017-2018

Aim: To implement Linear search and binary search recursively and non recursively

Description:
i) LINEAR SEARCH (SEQUENTIAL SEARCH): Search begins by comparing the first

element of the list with the target element. If it matches, the search ends. Otherwise, move

to next element and compare. In this way, the target element is compared with all the

elements until a match occurs. If the match do not occur and there are no more elements to

be compared, conclude that target element is absent in the list.

 For example consider the following list of elements.

 5 9 7 8 11 2 6 4

To search for element 11(i.e Key element = 11). first compare the target element

with first element in list i.e. 5. Since both are not matching we move on the next elements in

the list and compare. Finally found the match after 5 comparisons.

Algorithm for Linear search

Linear_Search (A[], N, val , pos)

Step 1 : Set pos = -1 and k = 0

Step 2 : Repeat while k < N

 Begin

Step 3 : if A[k] = val

 Set pos = k

 print pos

 Goto step 5

 End while

Step 4 : print “Value is not present”

Step 5 : Exit

Source code: Non recursive C++ program for Linear search

#include<iostream>

using namespace std;

int Lsearch(int list[],int n,int key);

int main()

{

int n,i,key,list[25],pos;

cout<<"enter no of elements\n";

cin>>n;

cout<<"enter "<<n<<" elements ";

for(i=0;i<n;i++)

cin>>list[i];

cout<<"enter key to search";

cin>>key;

pos= Lsearch (list,n,key);

if(pos==-1)

cout<<"\nelement not found";

else

cout<<"\n element found at index "<<pos;

}

Week 1: write a C++ programs to implement recursive and non recursive i) Linear search ii) Binary

search

Department of IT Page 2

Date Structures using C++ LAB 2017-2018

/*function for linear search*/

int Lsearch(int list[],int n,int key)

{

int i,pos=-1;

for(i=0;i<n;i++)

if(key==list[i])

{

pos=i;

break;

}

return pos;

}

Source code: Recursive C++ program for Linear search

#include<iostream>

using namespace std;

int Rec_Lsearch(int list[],int n,int key);

int main()

{

int n,i,key,list[25],pos;

cout<<"enter no of elements\n";

cin>>n;

cout<<"enter "<<n<<" elements ";

for(i=0;i<n;i++)

cin>>list[i];

cout<<"enter key to search";

cin>>key;

pos=Rec_Lsearch(list,n,key);

if(pos==-1)

cout<<"\nelement not found";

else

cout<<"\n element found at index "<<pos;

}

/*recursive function for linear search*/

int Rec_Lsearch(int list[],int n,int key)

{

if(n<=0)

 return -1;

Results

Department of IT Page 3

Date Structures using C++ LAB 2017-2018

if(list[n]==key)

 return n;

 else

 return Rec_Lsearch(list,n-1,key);

}

ii) Binary Searching: Before searching, the list of items should be sorted in ascending order.

First compare the key value with the item in the mid position of the array. If there is a match,

we can return immediately the position. if the value is less than the element in middle

location of the array, the required value is lie in the lower half of the array.if the value is

greater than the element in middle location of the array, the required value is lie in the upper

half of the array. We repeat the above procedure on the lower half or upper half of the array.

Algorithm:
Binary_Search (A [], U_bound, VAL)

Step 1 : set BEG = 0 , END = U_bound , POS = -1

Step 2 : Repeat while (BEG <= END)

Step 3 : set MID = (BEG + END) / 2

Step 4 : if A [MID] == VAL then

 POS = MID

 print VAL “ is available at “, POS

 GoTo Step 6

 End if

 if A [MID] > VAL then

 set END = MID – 1

 Else

 set BEG = MID + 1

 End if

 End while

Step 5 : if POS = -1 then

 print VAL “ is not present “

 End if

Step 6 : EXIT

Source code: Non recursive C++ program for binary search
#include<iostream>

using namespace std;

int binary_search(int list[],int key,int low,int high);

int main()

{

int n,i,key,list[25],pos;

 cout<<"enter no of elements\n" ;

 cin>>n;

Results

Department of IT Page 4

Date Structures using C++ LAB 2017-2018

 cout<<"enter "<<n<<" elements in ascending order ";

 for(i=0;i<n;i++)

 cin>>list[i];

 cout<<"enter key to search" ;

 cin>>key;

 pos=binary_search(list,key,0,n-1);

 if(pos==-1)

 cout<<"element not found" ;

 else

 cout<<"element found at index "<<pos;

}

/* function for binary search*/
 int binary_search(int list[],int key,int low,int high)

{

int mid,pos=-1;

 while(low<=high)

 {

 mid=(low+high)/2;

 if(key==list[mid])

 {

 pos=mid;

 break;

 }

 else if(key<list[mid])

 high=mid-1;

 else

 low=mid+1;

 }

 return pos;

}

Source code: Recursive C++ program for binary search
#include<iostream>

using namespace std;

int rbinary_search(int list[],int key,int low,int high);

int main()

{

int n,i,key,list[25],pos;

 cout<<"enter no of elements\n" ;

 cin>>n;

 cout<<"enter "<<n<<" elements in ascending order ";

 for(i=0;i<n;i++)

Results

Department of IT Page 5

Date Structures using C++ LAB 2017-2018

 cin>>list[i];

 cout<<"enter key to search" ;

 cin>>key;

 pos=rbinary_search(list,key,0,n-1);

 if(pos==-1)

 cout<<"element not found" ;

 else

 cout<<"element found at index "<<pos;

}

 /*recursive function for binary search*/
int rbinary_search(int list[],int key,int low,int high)

{

int mid,pos=-1;

 if(low<=high)

 {

 mid=(low+high)/2;

 if(key==list[mid])

 {

 pos=mid;

 return pos;

 }

 else if(key<list[mid])

 return rbinary_search(list,key,low,mid-1);

 else

 return rbinary_search(list,key,mid+1,high);

 }

 return pos;

}

Assignment :-

Task date sign Remarks
1.Write a program to find an element in the list of elements using linear

and binary search non recursively ,provide a provision to select between

linear and binary searching.

2. Write a program to find an element in the list of elements using linear

and binary search recursively, provide a provision to select between linear

and binary searching.

3. write a program to implement searching using linked list
4.Submit an analysis report of merits and demerits of linear and binary

searching.

Results

Department of IT Page 6

Date Structures using C++ LAB 2017-2018

Aim: To implement i) Bubble sort ii) Selection sort iii) Quick sort iv) Insertion sort

Description:

i)Bubble sort
The bubble sort is an example of exchange sort. In this method, repetitive comparison is

performed among elements and essential swapping of elements is done. Bubble sort is

commonly used in sorting algorithms. It is easy to understand but time consuming i.e.

takes more number of comparisons to sort a list . In this type, two successive elements are

compared and swapping is done. Thus, step-by-step entire array elements are checked. It

is different from the selection sort. Instead of searching the minimum element and then

applying swapping, two records are swapped instantly upon noticing that they

are not in order.

ALGORITHM:
Bubble_Sort (A [] , N)

Step 1: Start

Step 2: Take an array of n elements

Step 3: for i=0,………….n-2

Step 4: for j=i+1,…….n-1

Step 5: if arr[j]>arr[j+1] then

 Interchange arr[j] and arr[j+1]

 End of if

Step 6: Print the sorted array arr

 Step 7:Stop

Source code: Write a program to sort a list of numbers using bubble sort
#include<iostream>

using namespace std;

void bubble_sort(int list[30],int n);

int main()

{

int n,i;

int list[30];

 cout<<"enter no of elements\n";

 cin>>n;

 cout<<"enter "<<n<<" numbers ";

 for(i=0;i<n;i++)

 cin>>list[i];

 bubble_sort (list,n);

 cout<<" after sorting\n";

 for(i=0;i<n;i++)

 cout<<list[i]<<endl;

return 0;

}

void bubble_sort (int list[30],int n)

{

int temp ;

int i,j;

 for(i=0;i<n;i++)

Week 2: write a C++ programs to implement i) Bubble sort ii) Selection sort iii) quick sort iv) insertion

sort

Department of IT Page 7

Date Structures using C++ LAB 2017-2018

 for(j=0;j<n-1;j++)

 if(list[j]>list[j+1])

 {

 temp=list[j];

 list[j]=list[j+1];

 list[j+1]=temp;

 }

}

ii) Selection sort (Select the smallest and Exchange):

The first item is compared with the remaining n-1 items, and whichever of all is

lowest, is put in the first position. Then the second item from the list is taken and

compared with the remaining (n-2) items, if an item with a value less than that of the

second item is found on the (n-2) items, it is swapped (Interchanged) with the second item

of the list and so on.

Algorithm:

Selection_Sort (A [] , N)

Step 1 :start

Step 2: Repeat For K = 0 to N – 2

 Begin

Step 3 : Set POS = K

Step 4 : Repeat for J = K + 1 to N – 1

 Begin

 If A[J] < A [POS]

 Set POS = J

 End For

Step 5 : Swap A [K] with A [POS]

 End For

Step 6 : stop

Source code: Program to implement selection sort
#include<iostream>

using namespace std;

void selection_sort (int list[],int n);

int main()

{

int n,i;

int list[30];

Results

Department of IT Page 8

Date Structures using C++ LAB 2017-2018

 cout<<"enter no of elements\n";

 cin>>n;

 cout<<"enter "<<n<<" numbers ";

 for(i=0;i<n;i++)

 cin>>list[i];

 selection_sort (list,n);

 cout<<" after sorting\n";

 for(i=0;i<n;i++)

 cout<<list[i]<<endl;

return 0;

}

void selection_sort (int list[],int n)

{

int min,temp,i,j;

 for(i=0;i<n;i++)

 {

 min=i;

 for(j=i+1;j<n;j++)

 {

 if(list[j]<list[min])

 min=j;

 }

 temp=list[i];

 list[i]=list[min];

 list[min]=temp;

 }

}

iii) Quick sort: It is a divide and conquer algorithm. Quick sort first divides a large array into

two smaller sub-arrays: the low elements and the high elements. Quick sort can then

recursively sort the sub-arrays.

ALGORITHM:

Step 1: Pick an element, called a pivot, from the array.

Step 2: Partitioning: reorder the array so that all elements with values less than the pivot come

before the pivot, while all elements with values greater than the pivot come after it (equal

values can go either way). After this partitioning, the pivot is in its final position. This is called

the partition operation.

Results

Department of IT Page 9

Date Structures using C++ LAB 2017-2018

Step 3: Recursively apply the above steps to the sub-array of elements with smaller values and

separately to the sub-array of elements with greater values.

Source code: program to implement Quick sort

#include<iostream>

using namespace std;

void quicksort(int x[],int Lb,int Ub)

{

int down,up,pivot,t;

 if(Lb<Ub)

 {

 down=Lb;

 up=Ub;

 pivot=down;

 while(down<up)

 {

 while((x[down]<=x[pivot])&&(down<Ub))down++;

 while(x[up]>x[pivot])up--;

 if(down<up)

 {

 t=x[down];

 x[down]=x[up];

 x[up]=t;

 }/*endif*/

 }

 t=x[pivot];

 x[pivot]=x[up];

 x[up]=t;

 quicksort(x,Lb,up-1);

 quicksort(x,up+1,Ub);

 }

}

int main()

{

int n,i;

int list[30];

 cout<<"enter no of elements\n";

 cin>>n;

 cout<<"enter "<<n<<" numbers ";

 for(i=0;i<n;i++)

 cin>>list[i];

 quicksort(list,0,n-1);

 cout<<" after sorting\n";

 for(i=0;i<n;i++)

 cout<<list[i]<<endl;

return 0;

}

Department of IT Page 10

Date Structures using C++ LAB 2017-2018

iv) Insertion sort: It iterates, consuming one input element each repetition, and growing a

sorted output list. Each iteration, insertion sort removes one element from the input data,

finds the location it belongs within the sorted list, and inserts it there. It repeats until no

input elements remain

ALGORITHM:
Step 1: start

Step 2: for i ← 1 to length(A)

Step 3: j ← i

Step 4: while j > 0 and A[j-1] > A[j]

Step 5: swap A[j] and A[j-1]

Step 6: j ← j - 1

Step 7: end while

Step 8: end for

Step9: stop

Source code: program to implement insertion sort

#include<iostream>

using namespace std;

void insertion_sort(int a[],int n)

{

int i,t,pos;

 for(i=0;i<n;i++)

 {

 t=a[i];

 pos=i;

 while(pos>0&&a[pos-1]>t)

 {

 a[pos]=a[pos-1];

 pos--;

 }

 a[pos]=t;

 }

}

int main()

{

Results

Department of IT Page 11

Date Structures using C++ LAB 2017-2018

int n,i;

int list[30];

 cout<<"enter no of elements\n";

 cin>>n;

 cout<<"enter "<<n<<" numbers ";

 for(i=0;i<n;i++)

 cin>>list[i];

 insertion_sort(list,n);

 cout<<" after sorting\n";

 for(i=0;i<n;i++)

 cout<<list[i]<<endl;

return 0;

}

Assignment:-

Task date sign Remarks
1.What are the various time complexities of different sorting algorithms

2.Write a program to implement all above sorting techniques in a single

program. provide a menu for selection of various sorting techniques

during runtime.

3.Write a program to implement above sorting technique using dynamic

memory allocation

4.write a program to count no of operations performed in each step in all

sorting algorithms

Results

Department of IT Page 12

Date Structures using C++ LAB 2017-2018

Aim: To implement Stack ADT and Queue ADT using an array

Description:
Stack:It is an ordered collection of data elements into which new elements may be inserted and
from which elements may be deleted at one end called the “TOP” of stack.

 A stack is a last-in-first-out (LIFO) structure.

 Insertion operation is referred as “PUSH” and deletion operation is referred as “POP”.

 The most accessible element in the stack is the element at the position “TOP”.

 Stack must be created as empty.

 Whenever an element is pushed into stack, it must be checked whether the stack is

full or not.

 Whenever an element is popped form stack, it must be checked whether the stack is

empty or not.
 We can implement the stack ADT either with array or linked list.

ALGORITHM: push()

Step 1: if top> =max-1 then

Step 2: Display the stack overflows

Step 3: else then

Step 4: top ++

Step 5: assign stack[top]=x

Step 6: Display element is inserted

ALGORITHM pop()

Step 1: if top = =-1 then

Step 2: Display the stack is underflows

Step 3: else

Step 4: assign x=stack[top]

Step 5: top- -

Step 6: return x

Source code: To implement Stack ADT using an array

#include<iostream>

using namespace std;

#include<stdlib.h>

#define max 50

template <class T>

Week 3: Write C++ programs to implement the following using an array. Stack ADT b) Queue ADT

sort

Department of IT Page 13

Date Structures using C++ LAB 2017-2018

class stack

{

private:

 T top,stk[50],item;

public:

 stack();

 void push();

 void pop();

 void display();

};

template <class T>

stack<T>::stack()

{

top=-1;

}

//code to push an item into stack;

template <class T>

void stack<T>::push()

{

if(top==max-1)

 cout<<"Stack Overflow...\n";

else

 {

 cout<<"Enter an item to be pushed:";

 top++;

 cin>>item;

 stk[top]=item;

 cout<<"Pushed Sucesfully....\n";

 }

}

template <class T>

void stack<T>::pop()

{

if(top==-1)

 cout<<"Stack is Underflow";

else

 {

 item=stk[top];

 top--;

 cout<<item<<" is poped Sucesfully....\n";

 }

}

template <class T>

void stack<T>::display()

{

 if(top==-1)

 cout<<"Stack Under Flow";

 else

 {

 for(int i=top;i>-1;i--)

Department of IT Page 14

Date Structures using C++ LAB 2017-2018

 {

 cout<<"|"<<stk[i]<<"|\n";

 cout<<"----\n";

 }

 }

}

int main()

{

int choice;

stack<int>st;

 while(1)

 {

 cout<<"\n\n*****Menu for Skack operations*****\n\n";

 cout<<"1.PUSH\n2.POP\n3.DISPLAY\n4.EXIT\n";

 cout<<"Enter Choice:";

 cin>>choice;

 switch(choice)

 {

 case 1:

 st.push();

 break;

 case 2:

 st.pop();

 break;

 case 3: cout<<"Elements in the Stack are....\n";

 st.display();

 break;

 case 4:

 exit(0);

 default:cout<<"Invalid choice...Try again...\n";

 }

 }

}

Results

Department of IT Page 15

Date Structures using C++ LAB 2017-2018

QUEUE
DESCRIPTION:

Queue is a data structure in which the elements are added at one end, called the rear, and

deleted from the other end, called the front. A First In First Out data structure (FIFO).The

rear of the queue is accessed whenever a new element is added to the queue, and the front of

the queue is accessed whenever an element is deleted from the queue. As in a stack, the

middle elements in the queue are in accessible, even if the queue elements are sorted in an

array.

BASIC QUEUE OPERATIONS:

1. initializeQueue(): Initializes the queue to an empty state.

2. Determines whether the queue is empty. If the queue is empty, it returns the value

true; otherwise, it returns the value false.

3. Determines whether the queue is full. If the queue is empty, it returns the value

true; otherwise, it returns the value false.

4. rear: Returns the last element of the queue. Prior to this operation, the queue must

exit.

5. front: Returns the front, that is, the first element of the queue. Priority to this

operation, the queue must exit.

Queue can be stored either in an array or in linked list. We will consider both

implementations. Because elements are added at one end and remove from the other

end, we need two pointers to keep track of the front and rear of the queue, called

queueFront and queueRear. Queues are restricted versions of arrays and linked lists.

The middle terms of queue should not be accessed directly.

Source code: To implement Queue ADT using an array

#include<stdlib.h>

#include<iostream>

using namespace std;

#define max 5

template <class T>

class queue

{

private:T q[max],item;

 int front,rear;

public: queue();

 void insert_q();

 void delete_q();

 void display_q();

};

Department of IT Page 16

Date Structures using C++ LAB 2017-2018

template <class T>

queue<T>::queue()

{

 front=rear=-1;

}

//code to insert an item into queue;

template <class T>

void queue<T> ::insert_q()

{

if(rear>=max-1)

 cout<<"queue Overflow...\n";

else

 {

 if(front>rear)

 front=rear=-1;

 else

 { if(front==-1)

 front=0;

 rear++;

 cout<<"Enter an item to be inserted:";

 cin>>item;

 q[rear]=item;

 cout<<"inserted Sucesfully..into queue..\n";

 }

 }

}

template <class T>

void queue<T>::delete_q()

{

if(front==-1||front>rear)

 {

 front=rear=-1;

 cout<<"queue is Empty....\n";

 }

else

 {

 item=q[front];

 front++;

 cout<<item<<" is deleted Sucesfully....\n";

 }

}

template <class T>

void queue<T>::display_q()

{

 if(front==-1||front>rear)

 {

 front=rear=-1;

 cout<<"queue is Empty....\n";

 }

Department of IT Page 17

Date Structures using C++ LAB 2017-2018

 else

 {

 for(int i=front;i<=rear;i++)

 cout<<"|"<<q[i]<<"|<--";

 }

}

int main()

{

int choice;

queue<int> q;

 while(1)

 {

 cout<<"\n\n*****Menu for QUEUE operations*****\n\n";

 cout<<"1.INSERT\n2.DELETE\n3.DISPLAY\n4.EXIT\n";

 cout<<"Enter Choice:";

 cin>>choice;

 switch(choice)

 {

 case 1: q.insert_q();

 break;

 case 2: q.delete_q();

 break;

 case 3: cout<<"Elements in the queue are....\n";

 q.display_q();

 break;

 case 4: exit(0);

 default: cout<<"Invalid choice...Try again...\n";

 }

 }

 return 0;

}

Assignment :-

Task Date Sign remark
1.Write a program to perform matching of parenthesis using stack.
2.Write a program to perform evaluation of postfix expression
3.Write a program to convert given infix expression to post fix

Results

Department of IT Page 18

Date Structures using C++ LAB 2017-2018

Aim: To implement list ADT to perform following operations

 a) Insert an element into a list. b) Delete an element from list
 c) Search for a key element in list d)count number of nodes in list

Description:

List ADT
 A linked list is a data structure consisting of a group of nodes which together represent a
sequence. Each node is composed of a data part and a reference (in other words, a link) to the next
node in the sequence.

The Linked List is a collection of elements called nodes, each node of which stores two items of
information, i.e., data part and link field.
 The data part of each node consists the data record of an entity.
 The link field is a pointer and contains the address of next node.
 The beginning of the linked list is stored in a pointer termed as head which points to the first
node.
 The head pointer will be passed as a parameter to any method, to perform an operation.
 First node contains a pointer to second node, second node contains a pointer to the third node
and so on.
 The last node in the list has its next field set to NULL to mark the end of the list.

 There are several variants of linked lists. These are as follows:
 Singly linked list
 Circular linked list
 Doubly linked list
 Doubly circular linked list

SINGLE LINKED LIST:

Single Linked List is a collection of nodes. Each node contains 2 fields: I) info where the
information is stored and ii) link which points to the next node in the list.

The node is like this:

 Node

Info (or) data Link (or) next

Week 4: C++ programs to implement list ADT to perform following operations

 a) Insert an element into a list. b) Delete an element from list
 c) Search for a key element in list d)count number of nodes in list

sort

Department of IT Page 19

Date Structures using C++ LAB 2017-2018

The operations that can be performed on single linked lists includes: insertion, deletion and
traversing the list.
Various operations on a single linked list are
1.Insertion of a node into list
2.Deletion of a node from list
3.Traversal of the list

Source code:To Implement LIST ADT in C++

#include<stdlib.h>

#include<iostream.h>

#include<conio.h>

class node

{

public:

 int data;

 node *next;

};

class List

{

 int item;

 node *head;

public: List();

 void insert_front();

 void insert_end();

 void delete_front();

 void delete_end();

 void display();

 int node_count();

 void delete_before_pos();

 void delete_after_pos();

};

List::List()

{

 head=NULL;

}

//code to insert an item at front List;

void List::insert_front()

{

 node *p;

 cout<<"Enter an element to be inserted:";

 cin>>item;

 p=new node;

 p->data=item;

 p->next=NULL;

 if(head==NULL)

 {

 head=p;

 }

 else

Department of IT Page 20

Date Structures using C++ LAB 2017-2018

 { p->next=head;

 head=p;

 }

 cout<<"\nInserted at front of Linked List Sucesfully....\n";

 }

//code to insert an item at end List

void List::insert_end()

{

 node *p;

 cout<<"Enter an element to be inserted:";

 cin>>item;

 p=new node;

 p->data=item;

 p->next=NULL;

 if(head==NULL)

 {

 head=p;

 }

 else

 {

 node*t;

 t=head;

 while(t->next!=NULL)

 t=t->next;

 t->next=p;

 }

 cout<<"\nInserted an element at end of Linked List Sucesfully....\n";

 }

void List::delete_front()

{

node*t;

if(head==NULL)

 cout<<"\nList is Underflow";

else

 { item=head->data;

 t=head;

 head=head->next;

 cout<<"\n"<<item<<" is deleted Sucesfully from List....\n";

 delete(t);

 }

}

void List::delete_end()

{

node*t,*prev;

 if(head==NULL)

 cout<<"\nList is Underflow";

Department of IT Page 21

Date Structures using C++ LAB 2017-2018

 else

 {

 t=head;

 if(head->next==NULL)

 {

 cout<<"\n"<<t->data<<" is deleted Sucesfully from List....\n";

 delete(t);

 head=NULL;

 }

 else

 {

 while(t->next!=NULL)

 {

 prev=t;

 t=t->next;

 }

 prev->next=NULL;

 cout<<"\n"<<t->data<<" is deleted Sucesfully from List....\n";

 delete(t);

 }

 }

}

//Delete a node before a position

void List::delete_before_pos()

{

int i=1;

int pos;

node*t,*prev;

 if(head==NULL)

 cout<<"\nList is Underflow";

 else

 { cout<<"Enter position at which node has to be deleted:";

 cin>>pos;

 t=head;

 int nc=node_count();

 if(pos>nc||pos<=0)

 cout<<"invalid position ...try again\n";

 else

 {

 cout<<"Before Deletion elements in the List are..\n";

 display();

 while(i<pos)

 {

 prev=t;

 t=t->next;

 i++;

 }

 if(i==1)

 {

Department of IT Page 22

Date Structures using C++ LAB 2017-2018

 cout<<"\n"<<t->data<<" is deleted Sucesfully from List....\n";

 if(head->next==NULL)

 head=NULL;

 else

 {

 t=head;

 head=head->next;

 cout<<"\n"<<t->data<<"is deleted Sucesfully from List....\n";

 delete(t);

 }

 }

 else

 {

 prev->next=t->next;

 cout<<"\n"<<t->data<<" is deleted Sucesfully from List....\n";

 delete(t);

 }

 cout<<"After Deletion elements in the List are..\n";

 display();

 }

 }

}

//Delete a node after a position

void List::delete_after_pos()

{

int i=1;

int pos;

node*t,*prev;

 if(head==NULL)

 cout<<"\nList is Underflow";

 else

 { cout<<"Enter position at which node has to be deleted:";

 cin>>pos;

 t=head;

 int nc=node_count();

 if(pos>nc||pos<=0)

 cout<<"invalid position ...try again\n";

 else

 {

 cout<<"Before Deletion elements in the List are..\n";

 display();

 while(i<pos)

 {

 prev=t;

 t=t->next;

 i++;

 }

 if(i==1)

 {

 cout<<"\n"<<t->data<<" is deleted Sucesfully from List....\n";

Department of IT Page 23

Date Structures using C++ LAB 2017-2018

 if(head->next==NULL)

 head=NULL;

 else

 {

 t=head;

 head=head->next;

 cout<<"\n"<<t->data<<" is deleted Sucesfully from List....\n";

 delete(t);

 }

 }

 else

 {

 prev->next=t->next;

 cout<<"\n"<<t->data<<" is deleted Sucesfully from List....\n";

 delete(t);

 }

 cout<<"After Deletion elements in the List are..\n";

 display();

 }

 }

}

void List::display()

{

node*t;

 if(head==NULL)

 cout<<"\nList Under Flow";

 else

 {

 cout<<"\nElements in the List are....\n";

 t=head;

 while(t!=NULL)

 {

 cout<<"|"<<t->data<<"|->";

 t=t->next;

 }

 }

}

//code to count no of nodes

int List::node_count()

{

int nc=0;

node*t;

 if(head==NULL)

 {

 cout<<"\nList Under Flow"<<endl;

 // cout<<"No Nodes in the Linked List are: "<<nc<<endl;

 }

 else

 {

Department of IT Page 24

Date Structures using C++ LAB 2017-2018

 t=head;

 while(t!=NULL)

 {

 nc++;

 t=t->next;

 }

 // cout<<"No Nodes in the Linked List are: "<<nc<<endl;

 }

return nc;

}

int main()

{

int choice;

List LL;

 while(1)

 {

 cout<<"\n\n***Menu for Linked List operations***\n\n";

 cout<<"1.Insert Front\n2.Insert end\n3.Delete front\n4.Delete End\n5.DISPLAY\n";

 cout<<"6.Node Count\n7.Del before a position\n8.Del after position\n";

 cout<<"9.Clear Scrn\n10.Exit\nEnter Choice:";

 cin>>choice;

 switch(choice)

 {

 case 1: LL.insert_front();

 break;

 case 2: LL.insert_end();

 break;

 case 3: LL.delete_front();

 break;

 case 4: LL.delete_end();

 break;

 case 5: LL.display();

 break;

 case 6:cout<<"No of nodes in List:"<<LL.node_count();

 break;

 case 7:LL.delete_before_pos();

 break;

 case 8:LL.delete_after_pos();

 break;

 case 9:clrscr();

 break;

 case 10:exit(0);

 default:cout<<"Invalid choice...Try again...\n";

 }

 }

}

Department of IT Page 25

Date Structures using C++ LAB 2017-2018

Assignment:-

Task Date Sign Remark

1.Write a program to concatenate two linked lists

2.Write a program to reverse a given linked list

3.Write a program to generate two lists from a given linked list

such that first list contains all elements in odd places and second

list consists of all elements in even places

Results

Department of IT Page 26

Date Structures using C++ LAB 2017-2018

Aim: To implement Stack ADT and Queue ADT using a singly linked list.

Description:

A Stack is a collection of items in which new items may be deleted at end to

implement stack using linked list we need to define a node which in turn consist of data a

pointer to the next node. The advantage of representing stack using linked lists is that we can

decide which end should be top of a stack. And since the array size is fixed, in the array

(linear) representation of stack, only fixed number of elements can be pushed onto the stack.

If in a program the number of elements to be pushed exceeds the size of the array, the

program may terminate in an error. We must overcome these problems.

By using linked lists we can dynamically organize data (such as an ordered

list).Therefore , ;ogically the stack is never full. The stack is full only if we run out of

memory space. In the below program we select front end as top if stack in which we cab add

or remove data.

Source code: To implement Stack ADT using a singly linked list.

#include<stdlib.h>

#include<iostream>

using namespace std;

template <class T>

class node

{

public:

 T data;

 node<T>*next;

};

template <class T>

class stack

{

private:

T item;

 node<T> *top;

public: stack();

void push();

 void pop();

void display();

};

template <class T>

stack<T>::stack()

{

top=NULL;

}

//code to push an item into stack;

template <class T>

Week 5: Write C++ programs to implement the following using a singly linked list.

a) Stack ADT b) Queue ADT

sort

Department of IT Page 27

Date Structures using C++ LAB 2017-2018

void stack<T>::push()

{

 node<T>*t;

 node<T>*p;

 cout<<"Enter an item to be pushed:";

 cin>>item;

 p=new node<T>;

 p->data=item;

 p->next=top;

 top=p;

 cout<<"\nPushed Sucesfully....\n";

 }

template <class T>

void stack<T>::pop()

{

node<T>*t;

if(top==NULL)

cout<<"\nStack is Underflow";

else

 {

 item=top->data;

 top=top->next;

 cout<<"\n"<<item<<" is poped Sucesfully....\n";

 }

}

template <class T>

void stack<T>::display()

{

node<T>*t;

 if(top==NULL)

 cout<<"\nStack Under Flow";

 else

 { cout<<"\nElements in the Stack are....\n";

 t=top;

 while(t!=NULL)

 {

 cout<<"|"<<t->data<<"|\n";

 cout<<"----\n";

 t=t->next;

 }

 }

}

int main()

{

int choice;

stack<int>st;

 while(1)

 {

Department of IT Page 28

Date Structures using C++ LAB 2017-2018

 cout<<"\n\n***Menu for Skack operations***\n\n";

 cout<<"1.PUSH\n2.POP\n3.DISPLAY\n4.EXIT\n";

 cout<<"Enter Choice:";

 cin>>choice;

 switch(choice)

 {

 case 1:

 st.push();

 break;

 case 2:

 st.pop();

 break;

 case 3: st.display();

 break;

 case 4:

 exit(0);

 default:cout<<"Invalid choice...Try again...\n";

 }

 }

}

Description: Queue is a data structure in which the elements are added at one end, called the

rear, and deleted from the other end, called the front. A First In First Out data structure

(FIFO). The rear of the queue is accessed whenever a new element is added to the queue, and

the front of the queue is accessed whenever an element is deleted from the queue. As in a

stack, the middle elements in the queue are in accessible, even if the queue elements are

sorted in an array.

Source code: To implement QUEUE ADT using a singly linked list

#include<stdlib.h>

#include<iostream.h>

template <class T>

class node

{

public:

 T data;

 node<T>*next;

};

Results

Department of IT Page 29

Date Structures using C++ LAB 2017-2018

template <class T>

class queue

{

private:

 T item;

 friend class node<T>;

 node<T> *front,*rear;

public: queue();

 void insert_q();

 void delete_q();

 void display_q();

};

template <class T>

queue<T>::queue()

{

 front=rear=NULL;

}

//code to push an item into queue;

template <class T>

void queue<T>::insert_q()

{

 node<T>*p;

 cout<<"Enter an element to be inserted:";

 cin>>item;

 p=new node<T>;

 p->data=item;

 p->next=NULL;

 if(front==NULL)

 {

 rear=front=p;

 }

 else

 {

 rear->next=p;

 rear=p;

 }

 cout<<"\nInserted into Queue Sucesfully....\n";

 }

//code to delete an element

template <class T>

void queue<T>::delete_q()

{

node<T>*t;

if(front==NULL)

 cout<<"\nqueue is Underflow";

else

 {

 item=front->data;

 t=front;

 front=front->next;

Department of IT Page 30

Date Structures using C++ LAB 2017-2018

 cout<<"\n"<<item<<" is deleted Sucesfully from queue....\n";

 }

delete(t);

}

//code to display elements in queue

template <class T>

void queue<T>::display_q()

{

node<T>*t;

 if(front==NULL)

 cout<<"\nqueue Under Flow";

 else

 {

 cout<<"\nElements in the queue are....\n";

 t=front;

 while(t!=NULL)

 {

 cout<<"|"<<t->data<<"|<-";

 t=t->next;

 }

 }

}

int main()

{

int choice;

queue<int>q1;

 while(1)

 {

 cout<<"\n\n***Menu for Queue operations***\n\n";

 cout<<"1.Insert\n2.Delete\n3.DISPLAY\n4.EXIT\n";

 cout<<"Enter Choice:";

 cin>>choice;

 switch(choice)

 {

 case 1: q1.insert_q();

 break;

 case 2: q1.delete_q();

 break;

 case 3: q1.display_q();

 break;

 case 4: exit(0);

 default:cout<<"Invalid choice...Try again...\n";

 }

 }

 return 0;

}

Department of IT Page 31

Date Structures using C++ LAB 2017-2018

Assignment:-

Task Date Sign Remark

1.Submit an analysis report on stack implemented by static

allocation and dynamic allocation

2.Submit an analysis report on Queue implemented by static

allocation and dynamic allocation

3.Submit a report on application of stack and queue with

explanation

Results

Department of IT Page 32

Date Structures using C++ LAB 2017-2018

Aim: To implement the de queue (double ended queue) ADT using a doubly linked list and

an array.

Source code: To implement the de queue (double ended queue) ADT

#include <iostream.h>

#include<stdlib.h>

#include <conio.h>

template<class T>

class node

{

public:

 T data;

 node*prev;

 node*next;

};

template<class T>

class dll

{

node<T>*head;

public:

dll();

 void insert_front();

 void insert_end();

 void delete_front();

 void delete_end();

 void display();

 void insert_at_pos();

 int node_count();

};

template<class T>

 dll<T>::dll()

{

 head=NULL;

}

//code to insert node at front of list...

template<class T>

void dll<T>::insert_front()

{

node<T>*new_node;

 int x;

 new_node=new node<T>;

 cout<<"Enter data into node:\n";

 cin>>x;

 new_node->data=x;

 new_node->prev=NULL;

 new_node->next=NULL;

Week 6: Write C++ programs to implement the de queue (double ended queue) ADT using a

doubly linked list and an array.

sort

Department of IT Page 33

Date Structures using C++ LAB 2017-2018

 if(head==NULL)

 head=new_node;

 else

 {

 new_node->next=head;

 head->prev=new_node;

 head=new_node;

 }

 cout<<"Inserted node sucesfully...";

}

//code to insert node at end of list...

template<class T>

void dll<T>::insert_end()

{

node<T>*new_node;

node<T>*t;

int x;

 new_node=new node<T>;

 cout<<"Enter data into node:\n";

 cin>>x;

 new_node->data=x;

 new_node->next=NULL;

 new_node->prev=NULL;

 if(head==NULL)

 head=new_node;

 else

 {

 t=head;

 while(t->next!=NULL)

 t=t->next;

 t->next= new_node;

 new_node->prev=t;

 }

 cout<<"Inserted node sucesfully...";

}

template<class T>

void dll<T>::delete_front()

{

node<T>*temp;

 if(head==NULL)

 cout<<"List is empty....\n ";

 else if(head->next==NULL)

 {

 temp=head;

cout<<"Deleted element from Doubly Linked List is "<<temp->data<<endl;

 delete temp;

 head=NULL;

 }

 else

Department of IT Page 34

Date Structures using C++ LAB 2017-2018

 {

 temp=head;

 head=head->next;

 head->prev=NULL;

 cout<<"Deleted element from Doubly Linked List is "<<temp->data<<endl;

 delete temp;

 cout<<"Elements after deletion from Front are...\n";

 display();

 }

}

template<class T>

void dll<T>::delete_end()

{

node<T>*t1;

node<T>*t2;

 if(head==NULL)

 cout<<"List is empty....\n ";

 else

 {

 t1=t2=head;

 if(head->next==NULL)

 {

 head=NULL;

 cout<<"Deleted element from Doubly Linked List is "<<t1->data<<endl;

 delete t1;

 }

 else

 {

 while(t1->next!=NULL)

 {

 t2=t1;

 t1=t1->next;

 }

 t2->next=NULL;

 cout<<"Deleted element from Doubly Linked List is "<<t1->data<<endl;

 delete t1;

 cout<<"Elements after Deletion from End are...\n";

 display();

 }

 }

}

template<class T>

void dll<T>::insert_at_pos()

{

node<T>*new_node;

node<T>*t1;

node<T>*t2;

int x,pos,nc;

 new_node=new node<T>;

 cout<<"Enter data into node:\n";

Department of IT Page 35

Date Structures using C++ LAB 2017-2018

 cin>>x;

 cout<<"enter Pos at which node has to be inserted:";

 cin>>pos;

 new_node->data=x;

 new_node->next=NULL;

 new_node->prev=NULL;

 nc=node_count();

 cout<<"node count="<<nc<<endl;

 if(pos<=0||pos>nc+1)

 cout<<"invalid position";

 else

 {

 if(pos==1)

 {

 if(head==NULL)

 head=new_node;

 else

 {

 new_node->next=head;

 head->prev=new_node;

 head=new_node;

 }

 }

 else

 {

 t1=t2=head;

 int i=1;

 while(i<pos)

 {

 t2=t1;

 t1=t1->next;

 i++;

 }

 if(t1==NULL)

 {

 new_node->next=NULL;

 }

 else

 {

 t1->prev=new_node;

 }

 t2->next= new_node;

 new_node->prev=t2;

 }

 cout<<"Inserted node sucesfully...";

 }

Department of IT Page 36

Date Structures using C++ LAB 2017-2018

}

template<class T>

int dll<T>:: node_count()

{

int i=0;

node<T> *t;

t=head;

while(t!=NULL)

{

t=t->next;

i++;

}

return i;

}

template<class T>

void dll<T>::display()

{

node<T>*t;

int count;

 t=head;

 if(head==NULL)

 {

 cout<<"Doubly linked list is empty.....\n";

 }

 else

 {

 cout<<"Elements in the list are........\n";

 while(t!=NULL)

 {

 cout<<"|"<<t->data<<"|-> ";

 t=t->next;

 }

 }

count=node_count();

cout<<"\n Total No of nodes in Doubly linked List are:"<<count<<endl;

}

int main()

{

dll<int> d;

int choice;

 while(1)

 { cout<<"\n***Menu for Doubly linked list operations***\n";

 cout<<"\n1.insert front";

 cout<<"\n2.insert end";

 cout<<"\n3.delete front";

 cout<<"\n4.delete end";

 cout<<"\n5.Display";

 cout<<"\n6.insert at pos";

Department of IT Page 37

Date Structures using C++ LAB 2017-2018

 cout<<"\n7.Exit";

 cout<<"\nEnter Choice:";

 cin>>choice;

 switch(choice)

 {

 case 1:d.insert_front();

 break;

 case 2:d.insert_end();

 break;

 case 3:d.delete_front();

 break;

 case 4:d.delete_end();

 break;

 case 5:d.display();

 break;

 case 6:d.insert_at_pos();

 break;

 case 7:exit(0);

 }

 }

//return 0;

}

Assignment:-

Task Date Sign Remark

1.Implement queue using doubly linked list

2.Implement circular Queue using doubly linked list

3.

Results

Department of IT Page 38

Date Structures using C++ LAB 2017-2018

Description:

Binary Search Tree:

 So to make the searching algorithm faster in a binary tree we will go for building the

binary search tree. The binary search tree is based on the binary search algorithm. While

creating the binary search tree the data is systematically arranged.

That means values at

left sub-tree < root node value < right sub-tree values.

Source code:

#include<stdlib.h>

#include<iostream.h>

class node

{

public:

 int data;

 node*lchild;

 node*rchild;

};

class bst:public node

{ int item;

 node *root;

public: bst();

 void insert_node();

 void delete_node();

 void display_bst();

 void inorder(node*);

Week 7: Write a C++ program to perform the following operations:

 a) Insert an element into a binary search tree.

 b) Delete an element from a binary search tree.

 c) Search for a key element in a binary search tree.

10

15 7

12 9 18 5

Department of IT Page 39

Date Structures using C++ LAB 2017-2018

};

bst::bst()

{

root=NULL;

}

void bst:: insert_node()

{

node *new_node,*curr,*prev;

 new_node=new node;

 cout<<"Enter data into new node";

 cin>>item;

 new_node->data=item;

 new_node->lchild=NULL;

 new_node->rchild=NULL;

 if(root==NULL)

 root=new_node;

 else

 { curr=prev=root;

 while(curr!=NULL)

 { if(new_node->data>curr->data)

 { prev=curr;

 curr=curr->rchild;

 }

 else

 { prev=curr;

 curr=curr->lchild;

 }

 }

 cout<<"Prev:"<<prev->data<<endl;

 if(prev->data>new_node->data)

 prev->lchild=new_node;

 else

 prev->rchild=new_node;

 }

}

//code to delete a node

void bst::delete_node()

{

if(root==NULL)

 cout<<"Tree is Empty";

else

{

int key;

 cout<<"Enter the key value to be deleted";

 cin>>key;

 node* temp,*parent,*succ_parent;

 temp=root;

 while(temp!=NULL)

 { if(temp->data==key)

 { //deleting node with two childern

Department of IT Page 40

Date Structures using C++ LAB 2017-2018

 if(temp->lchild!=NULL&&temp->rchild!=NULL)

 { //search for inorder sucessor

 node*temp_succ;

 temp_succ=temp->rchild;

 while(temp_succ->lchild!=NULL)

 {

 succ_parent=temp_succ;

 temp_succ=temp_succ->lchild;

 }

 temp->data=temp_succ->data;

 succ_parent->lchild=NULL;

 cout<<"Deleted sucess fully";

 return;

 }

 //deleting a node having one left child

 if(temp->lchild!=NULL&temp->rchild==NULL)

 {

 if(parent->lchild==temp)

 parent->lchild=temp->lchild;

 else

 parent->rchild=temp->lchild;

 temp=NULL;

 delete(temp);

 cout<<"Deleted sucess fully";

 return;

 }

 //deleting a node having one right child

 if(temp->lchild==NULL&temp->rchild!=NULL)

 {

 if(parent->lchild==temp)

 parent->lchild=temp->rchild;

 else

 parent->rchild=temp->rchild;

 temp=NULL;

 delete(temp);

 cout<<"Deleted sucess fully";

 return;

 }

 //deleting a node having no child

 if(temp->lchild==NULL&temp->rchild==NULL)

 {

 if(parent->lchild==temp)

 parent->lchild=NULL;

 else

 parent->rchild=NULL;

 temp=NULL;

 delete(temp);

 cout<<"Deleted sucess fully";

 return;

 }

Department of IT Page 41

Date Structures using C++ LAB 2017-2018

 }

 else if(temp->data<key)

 { parent=temp;

 temp=temp->rchild;

 }

 else if(temp->data>key)

 { parent=temp;

 temp=temp->lchild;

 }

 }//end while

 }//end if

 }//end delnode func

void bst::display_bst()

{

 if(root==NULL)

 cout<<"\nBST Under Flow";

 else

 inorder(root);

}

void bst::inorder(node*t)

{

 if(t!=NULL)

 {

 inorder(t->lchild);

 cout<<" "<<t->data;

 inorder(t->rchild);

 }

}

int main()

{

bst bt;

int i;

 while(1)

 {

 cout<<"****BST Operations****";

 cout<<"\n1.Insert\n2.Display\n3.del\n4.exit\n";

 cout<<"Enter Choice:";

 cin>>i;

 switch(i)

 {

 case 1:bt.insert_node();

 break;

 case 2:bt.display_bst();

 break;

 case 3:bt.delete_node();

 break;

 case 4:exit(0);

 default: cout<<"Enter correct choice";

 }

Department of IT Page 42

Date Structures using C++ LAB 2017-2018

 }

}

Assignment:-

Task Date Sign Remark

1.What is a binary tree& binary search tree

2.Applications of binary search tree

Results

Department of IT Page 43

Date Structures using C++ LAB 2017-2018

Aim: To implement Merge sort and Heap sort

Description:

Merge sort is an O(n log n) comparison-based sorting algorithm. It is stable, meaning that

it preserves the input order of equal elements in the sorted output. It is an example of the

divide and conquer algorithmic paradigm. Merge sort is so inherently sequential that it's

practical to run it using slow tape drives as input and output devices. It requires very little

memory, and the memory required does not change with the number of data elements. If you

have four tape drives, it works as follows:

1. Divide the data to be sorted in half and put half on each of two tapes

2. Merge individual pairs of records from the two tapes; write two-record chunks

alternately to each of the two output tapes

3. Merge the two-record chunks from the two output tapes into four-record chunks; write

these alternately to the original two input tapes

4. Merge the four-record chunks into eight-record chunks; write these alternately to the

original two output tapes

5. Repeat until you have one chunk containing all the data, sorted --- that is, for log n

passes, where n is the number of records.

Conceptually, merge sort works as follows:

1. Divide the unsorted list into two sublists of about half the size

2. Divide each of the two sublists recursively until we have list sizes of length 1, in

which case the list itself is returned

3. Merge the two sublists back into one sorted list.

Source code:

#include<iostream>

using namespace std;

 #define max 15

 template<class T>

 void merge(T a[],int l,int m,int u)

 {

 T b[max];

 int i,j,k;

 i=l; j=m+1;

 k=l;

 while((i<=m)&&(j<=u))

 {

Week 8 : Write C++ programs for implementing the following sorting methods:

a) Merge sort b) Heap sort

http://en.wikipedia.org/wiki/Recursion
http://en.wikipedia.org/wiki/Merge_algorithm

Department of IT Page 44

Date Structures using C++ LAB 2017-2018

 if(a[i]<=a[j])

 {

 b[k]=a[i];

 ++i;

 }

 else

 {

 b[k]=a[j];

 ++j;

 }

 ++k;

 }

 if(i>m)

 {

 while(j<=u)

 {

 b[k]=a[j];

 ++j;

 ++k;

 }

 }

 else

 {

 while(i<=m)

 {

 b[k]=a[i];

 ++i;

 ++k;

 }

 }

 for(int r=l;r<=u;r++)

 a[r]=b[r];

}

 template <class T>

 void mergesort(T a[],int p,int q)

 {

 int mid;

 if(p<q)

 {

 mid=(p+q)/2;

 mergesort(a,p,mid);

 mergesort(a,mid+1,q);

 merge(a,p,mid,q);

 }

}

int main()

{

Department of IT Page 45

Date Structures using C++ LAB 2017-2018

int n,i;

int list[30];

 cout<<"enter no of elements\n";

 cin>>n;

 cout<<"enter "<<n<<" numbers ";

 for(i=0;i<n;i++)

 cin>>list[i];

 mergesort (list,0,n-1);

 cout<<" after sorting\n";

 for(i=0;i<n;i++)

 cout<<list[i]<<endl;

return 0;

}

HEAP SORT

Heap sort is a method in which a binary tree is used. In this method first the heap is created

using binary tree and then heap is sorted using priority queue.

Source code:// C++ program for implementation of Heap Sort

#include <iostream>

using namespace std;

// To heapify a subtree rooted with node i which is

// an index in arr[]. n is size of heap

void heapify(int arr[], int n, int i)

{

 int largest = i; // Initialize largest as root

 int l = 2*i + 1; // left = 2*i + 1

 int r = 2*i + 2; // right = 2*i + 2

 // If left child is larger than root

 if (l < n && arr[l] > arr[largest])

 largest = l;

 // If right child is larger than largest so far

Results

Department of IT Page 46

Date Structures using C++ LAB 2017-2018

 if (r < n && arr[r] > arr[largest])

 largest = r;

 // If largest is not root

 if (largest != i)

 {

 swap(arr[i], arr[largest]);

 // Recursively heapify the affected sub-tree

 heapify(arr, n, largest);

 }

}

// main function to do heap sort

void heapSort(int arr[], int n)

{

 // Build heap (rearrange array)

 for (int i = n / 2 - 1; i >= 0; i--)

 heapify(arr, n, i);

 // One by one extract an element from heap

 for (int i=n-1; i>=0; i--)

 {

 // Move current root to end

 swap(arr[0], arr[i]);

 // call max heapify on the reduced heap

 heapify(arr, i, 0);

 }

}

/* A utility function to print array of size n */

void printArray(int arr[], int n)

{

 for (int i=0; i<n; ++i)

 cout << arr[i] << " ";

 cout << "\n";

}

int main()

{

int n,i;

int list[30];

 cout<<"enter no of elements\n";

 cin>>n;

 cout<<"enter "<<n<<" numbers ";

 for(i=0;i<n;i++)

 cin>>list[i];

 heapSort(list, n);

 cout << "Sorted array is \n";

Department of IT Page 47

Date Structures using C++ LAB 2017-2018

 printArray(list, n);

return 0;

}

Assignment:-

Task Date Sign Remark

1.Write a program to explain time complexity in Merge sort

2.Explain about heap sort

Results

Department of IT Page 48

Date Structures using C++ LAB 2017-2018

Aim: To implement Binary tree traversals

Description:

It is often convenient to a single list containing all the nodes in a tree. This list may
correspond to an order in which the nodes should be visited when the tree is being
searched. We define three such lists here, the preorder, postorder and inorder traversals of
the tree. The definitions themselves are recursive:

 if T is the empty tree, then the empty list is the preorder, the inorder and the
postorder traversal associated with T;

 if T = [N] consists of a single node, the list [N] is the preorder, the inorder and the
postorder traversal associated with T;

 otherwise, T contains a root node n, and subtrees T1,..., Tn: and
o the preorder traversal of the nodes of T is the list containing N, followed, in

order by the preorder traversals of T1..., Tn;
o the inorder traversal of the nodes of T is the list containing the inorder

traversal of T1 followed by N followed in order by the inorder traversal of
each of T2,..., Tn.

o the postorder traversal of the nodes of T is the list containing in order the
postorder traversal of each of T1,..., Tn, followed by N.

Source code:

 #include<stdlib.h>

#include<iostream.h>

class node

{

public:

 int data;

 node*Lchild;

 node*Rchild;

};

class bst

{

 int item;

 node *root;

public: bst();

 void insert_node();

 void delete_node();

 void display_bst();

 void preeorder(node*);

 void inorder(node*);

 void postorder(node*);

};

Week 9 : Write C++ programs that use recursive functions to traverse the given

 binary tree in Preorder b) inorder and c) postorder

Department of IT Page 49

Date Structures using C++ LAB 2017-2018

bst::bst()

{

root=NULL;

}

void bst:: insert_node()

{

node *new_node,*curr,*prev;

 new_node=new node;

 cout<<"Enter data into new node";

 cin>>item;

 new_node->data=item;

 new_node->Lchild=NULL;

 new_node->Rchild=NULL;

 if(root==NULL)

 root=new_node;

 else

 {

 curr=prev=root;

 while(curr!=NULL)

 {

 if(new_node->data>curr->data)

 {

 prev=curr;

 curr=curr->Rchild;

 }

 else

 {

 prev=curr;

 curr=curr->Lchild;

 }

 }

 cout<<"Prev:"<<prev->data<<endl;

 if(prev->data>new_node->data)

 prev->Lchild=new_node;

 else

 prev->Rchild=new_node;

 }

}

//code to delete a node

void bst::delete_node()

{

if(root==NULL)

 cout<<"Tree is Empty";

else

{

 int key;

 cout<<"Enter the key value to be deleted";

 cin>>key;

 node* temp,*parent,*succ_parent;

 temp=root;

Department of IT Page 50

Date Structures using C++ LAB 2017-2018

 while(temp!=NULL)

 {

 if(temp->data==key)

 { //deleting node with two childern

 if(temp->Lchild!=NULL&&temp->Rchild!=NULL)

 { //search for sucessor

 node*temp_succ;

 temp_succ=temp->Rchild;

 while(temp_succ->Lchild!=NULL)

 {

 succ_parent=temp_succ;

 temp_succ=temp_succ->Lchild;

 }

 temp->data=temp_succ->data;

 succ_parent->Lchild=NULL;

 cout<<"Deleted sucess fully";

 return;

 }

 //deleting a node having one left child

 if(temp->Lchild!=NULL&temp->Rchild==NULL)

 {

 if(parent->Lchild==temp)

 parent->Lchild=temp->Lchild;

 else

 parent->Rchild=temp->Lchild;

 temp=NULL;

 delete(temp);

 cout<<"Deleted sucess fully";

 return;

 }

 //deleting a node having one right child

 if(temp->Lchild==NULL&temp->Rchild!=NULL)

 {

 if(parent->Lchild==temp)

 parent->Lchild=temp->Rchild;

 else

 parent->Rchild=temp->Rchild;

 temp=NULL;

 delete(temp);

 cout<<"Deleted sucess fully";

 return;

 }

 //deleting a node having no child

 if(temp->Lchild==NULL&temp->Rchild==NULL)

 {

 if(parent->Lchild==temp)

 parent->Lchild=NULL;

 else

 parent->Rchild=NULL;

 temp=NULL;

Department of IT Page 51

Date Structures using C++ LAB 2017-2018

 delete(temp);

 cout<<"Deleted sucess fully";

 return;

 }

 }

 else if(temp->data<key)

 {

 parent=temp;

 temp=temp->Rchild;

 }

 else if(temp->data>key)

 {

 parent=temp;

 temp=temp->Lchild;

 }

 }//end while

 }//end if

 }//end delnode func

void bst::display_bst()

{

 if(root==NULL)

 cout<<"\nBinary Search Tree is Under Flow";

 else

 {

 int ch;

 cout<<"\t\t**Binart Tree Traversals**\n";

 cout<<"\t\t1.Pree order\n\t\t2.Inorder\n\t\t3:PostOrder\n";

 cout<<"\t\tEnter Your Chice:";

 cin>>ch;

 switch(ch)

 {

 case 1: cout<<"Pree order Tree Traversal\n ";

 preeorder(root);

 break;

 case 2: cout<<"Inorder Tree Traversal is\n ";

 inorder(root);

 break;

 case 3: cout<<"Inorder Tree Traversal is\n";

 postorder(root);

 break;

 }

 }

}

void bst::inorder(node*t)

{

 if(t!=NULL)

 {

 inorder(t->Lchild);

 cout<<" "<<t->data;

Department of IT Page 52

Date Structures using C++ LAB 2017-2018

 inorder(t->Rchild);

 }

}

void bst::preeorder(node*t)

{

 if(t!=NULL)

 {

 cout<<" "<<t->data;

 preeorder(t->Lchild);

 preeorder(t->Rchild);

 }

}

void bst::postorder(node*t)

{

 if(t!=NULL)

 {

 postorder(t->Lchild);

 postorder(t->Rchild);

 cout<<" "<<t->data;

 }

}

int main()

{

bst bt;

int i;

 while(1)

 { cout<<"\n\n***Operations Binary Search Tree***\n";

 cout<<"1.Insert\n2.Display\n3.del\n4.exit\n";

 cout<<"Enter Choice:";

 cin>>i;

 switch(i)

 {

 case 1:bt.insert_node();

 break;

 case 2:bt.display_bst();

 break;

 case 3:bt.delete_node();

 break;

 case 4:exit(0);

 default:cout<<"Enter correct choice";

 }

 }

}

Department of IT Page 53

Date Structures using C++ LAB 2017-2018

Assignment:-

Task Date Sign Remark

1.What is a Tree traversal.

2.Application of Tree traversal

Results

Department of IT Page 54

Date Structures using C++ LAB 2017-2018

Aim: To implement B Tree

Source code:

#include<iostream.h>

#include<stdio.h>

#include<string.h>

#include<conio.h>

#include<stdlib.h>

#define MAX 4

#define MIN 2

typedef char Type[10];

typedef struct Btree

{

Type key;

}BT;

typedef struct treenode

{

int count;

BT entry[MAX+1];

treenode *branch[MAX+1];

}node;

class B

{

node *root;

public:

int LT(char *,char *);

int EQ(char *,char *);

node *Search(Type target,node *root,int *targetpos);

int SearchNode(Type target,node *current,int *pos);

node *Insert(BT New,node *root);

int MoveDown(BT New,node *current,BT *med,node **medright);

void InsertIn(BT med,node *medright,node *current,int pos);

void Split(BT med,node *medright,node *current,int pos,BT *newmedian,node

**newright);

void Delete(Type target,node **root);

void Del_node(Type target,node *current);

void Remove(node *current,int pos);

void Successor(node *current,int pos);

void Adjust(node *current,int pos);

void MoveRight(node *current,int pos);

void MoveLeft(node *current,int pos);

 void Combine(node *current,int pos);

void InOrder(node *root);

};

Week 10 : Write a C++ program to perform the following operations

a) Insertion into a B-tree b) Deletion from a B-tree

Department of IT Page 55

Date Structures using C++ LAB 2017-2018

int B::LT(char *a,char *b)

{

if((strcmp(a,b))<(0))

return 1;

else

return 0;

}

int B::EQ(char *a,char *b)

{

if((strcmp(a,b))==(0))

return 1;

else

return 0;

}

node* B::Search(Type target,node *root,int *targetpos)

{

if(root==NULL)

return NULL;

else if(SearchNode(target,root,targetpos))

return root;

else

return Search(target,root->branch[*targetpos],targetpos);

}

int B::SearchNode(Type target,node *current,int *pos)

{

if(LT(target,current->entry[1].key))

{

*pos=0;

return 0;

}

else

{

for(*pos=current->count;

LT(target,current->entry[*pos].key) && *pos>1;(*pos)--);

return EQ(target,current->entry[*pos].key);

}

}

node *B::Insert(BT newentry,node *root)

{

BT medentry;

node *medright;

node *New;

if(MoveDown(newentry,root, &medentry, &medright))

{

New=new node;

New->count=1;

New->entry[1]=medentry;

New->branch[0]=root;

New->branch[1]=medright;

Department of IT Page 56

Date Structures using C++ LAB 2017-2018

return New;

}

return root;

}

int B::MoveDown(BT New,node *current,BT *med,node **medright)

{

int pos;

if(current==NULL)

{

*med=New;

*medright=NULL;

return 1;

}

else

{

if(SearchNode(New.key,current,&pos))

cout<<"Duplicate key\n";

if(MoveDown(New,current->branch[pos],med,medright))

if(current->count<MAX)

{

InsertIn(*med,*medright,current,pos);

return 0;

}

else

{

Split(*med,*medright,current,pos,med,medright);

return 1;

}

return 0;

}

}

void B::InsertIn(BT med,node *medright,node *current,int pos)

{

int i;

for(i=current->count;i>pos;i--)

{

current->entry[i+1]=current->entry[i];

current->branch[i+1]=current->branch[i];

}

current->entry[pos+1]=med;

current->branch[pos+1]=medright;

current->count++;

}

void B::Split(BT med,node *medright,node *current,int pos,BT *newmedian,node

**newright)

{

int i;

 int median;

 if(pos<=MIN)

median=MIN;

Department of IT Page 57

Date Structures using C++ LAB 2017-2018

 else

median=MIN+1;

 *newright=new node;

for(i=median+1;i<=MAX;i++)

{

(*newright)->entry[i-median]=current->entry[i];

 (*newright)->branch[i-median]=current->branch[i];

}

 (*newright)->count=MAX-median;

 current->count=median;

 if(pos<=MIN)

InsertIn(med,medright,current,pos);

 else

InsertIn(med,medright,*newright,pos-median);

 *newmedian=current->entry[current->count];

 (*newright)->branch[0]=current->branch[current->count];

 current->count--;

}

void B::Delete(Type target,node **root)

{

node *prev;

Del_node(target,*root);

if((*root)->count==0)

{

prev=*root;

*root=(*root)->branch[0];

free(prev);

}

}

void B::Del_node(Type target,node *current)

{

int pos;

if(!current)

{

cout<<"Item not in the Btree\n";

return;

}

else

{

if(SearchNode(target,current,&pos))

if(current->branch[pos-1])

{

Successor(current,pos);

Del_node(current->entry[pos].key,current->branch[pos]);

}

else

Remove(current,pos);

else

Department of IT Page 58

Date Structures using C++ LAB 2017-2018

Del_node(target,current->branch[pos]);

if(current->branch[pos])

if(current->branch[pos]->count<MIN)

Adjust(current,pos);

}

}

void B::Remove(node *current,int pos)

{

int i;

for(i=pos+1;i<=current->count;i++)

{

current->entry[i-1]=current->entry[i];

current->branch[i-1]=current->branch[i];

}

current->count--;

}

void B::Successor(node *current,int pos)

{

node *leaf;

for(leaf=current->branch[pos];leaf->branch[0];

leaf=leaf->branch[0]);

current->entry[pos]=leaf->entry[1];

}

void B::Adjust(node *current,int pos)

{

if(pos==0)

if(current->branch[1]->count > MIN)

MoveLeft(current,1);

else

Combine(current,1);

else if(pos==current->count)

if(current->branch[pos-1]->count > MIN)

MoveRight(current,pos);

else

Combine(current,pos);

else if(current->branch[pos-1]->count > MIN)

MoveRight(current,pos);

else if(current->branch[pos+1]->count > MIN)

MoveLeft(current,pos+1);

else

Combine(current,pos);

}

void B::MoveRight(node *current,int pos)

{

int i;

Department of IT Page 59

Date Structures using C++ LAB 2017-2018

node *t;

t=current->branch[pos];

for(i=t->count;i>0;i--)

{

t->entry[i+1]=t->entry[i];

t->branch[i+1]=t->branch[i];

}

t->branch[1]=t->branch[0];

t->count++;

t->entry[1]=current->entry[pos];

t=current->branch[pos-1];

current->entry[pos]=t->entry[t->count];

current->branch[pos]->branch[0]=t->branch[t->count];

t->count--;

}

void B::MoveLeft(node *current,int pos)

{

int c;

node *t;

t=current->branch[pos-1];

t->count++;

t->entry[t->count]=current->entry[pos];

t->branch[t->count]=current->branch[pos]->branch[0];

t=current->branch[pos];

current->entry[pos]=t->entry[1];

t->branch[0]=t->branch[1];

t->count--;

for(c=1;c<=t->count;c++)

t->entry[c]=t->entry[c+1];

t->branch[c]=t->branch[c+1];

}

void B::Combine(node *current,int pos)

{

int c;

node *right;

node *left;

right=current->branch[pos];

left=current->branch[pos-1];

left->count++;

left->entry[left->count]=current->entry[pos];

left->branch[left->count]=right->branch[0];

for(c=1;c<=right->count;c++)

{

left->count++;

left->entry[left->count]=right->entry[c];

left->branch[left->count]=right->branch[c];

}

Department of IT Page 60

Date Structures using C++ LAB 2017-2018

for(c=pos;c<current->count;c++)

{

current->entry[c]=current->entry[c+1];

current->branch[c]=current->branch[c+1];

}

current->count--;

free(right);

}

void B::InOrder(node *root)

{

int pos;

if(root)

{

InOrder(root->branch[0]);

for(pos=1;pos<=root->count;pos++)

{

cout<<" "<<root->entry[pos].key;

InOrder(root->branch[pos]);

}

}

}

int main()

{

int choice,targetpos;

Type inKey;

BT New;

B obj;

node *root,*target;

root=NULL;

while(1)

{

cout<<"\n IMPLEMENTATION OF B-TREE\n";

cout<<"\n1.INSERT\n2.DELETE\n3.SEARCH\n4.DISPLAY\n5.EXIT\n";

cout<<"Enter Your Choice\n";

cin>>choice;

switch(choice)

{

case 1:cout<<"enter the key to be inserted\n";

fflush(stdin);

gets(New.key);

root=obj.Insert(New,root);

break;

case 2:cout<<"enter the key to be deleted\n";

fflush(stdin);

gets(New.key);

cout<<"Deleting the desired item\n";

obj.Delete(New.key,&root);

Department of IT Page 61

Date Structures using C++ LAB 2017-2018

break;

case 3:cout<<"enter the key to be searched\n";

fflush(stdin);

gets(New.key);

target=obj.Search(New.key,root,&targetpos);

if(target)

cout<<"The searched item"<<target->entry[targetpos].key<<endl;

else

cout<<"Element not found\n";

break;

case 4:cout<<"\n InOrder Traversal\n";

obj.InOrder(root);

break;

case 5:exit(0);

}

}

}

Assignment:-

Task Date Sign Remark

1.What is a B-Tree

2.Application of B-Tree

Results

Department of IT Page 62

Date Structures using C++ LAB 2017-2018

Aim: To implement AVL tree

Source code:

include <iostream.h>

include <stdlib.h>

include <conio.h>

struct node

{

 int element;

 node *left;

 node *right;

 int height;

};

typedef struct node *np;

class bstree

{

 public:

 void insert(int,np &);

 void del(int, np &);

 int deletemin(np &);

 void find(int,np &);

 np findmin(np);

 np findmax(np);

 void copy(np &,np &);

 void makeempty(np &);

 np nodecopy(np &);

 void preorder(np);

 void inorder(np);

 void postorder(np);

 int bsheight(np);

 np srl(np &);

 np drl(np &);

 np srr(np &);

 np drr(np &);

 int max(int,int);

 int nonodes(np);

};

// Inserting a node

void bstree::insert(int x,np &p)

{

 if (p == NULL)

 {

 p = new node;

 p->element = x;

 p->left=NULL;

 p->right = NULL;

 p->height=0;

Week 11 : Write a C++ program to perform the following operations

a) Insertion into an AVL-tree b) Deletion from an AVL-tree

Department of IT Page 63

Date Structures using C++ LAB 2017-2018

 if (p==NULL)

 cout<<"Out of Space";

 }

 else

 {

 if (x<p->element)

 {

 insert(x,p->left);

 if ((bsheight(p->left) - bsheight(p->right))==2)

 {

 if (x < p->left->element)

 p=srl(p);

 else

 p = drl(p);

 }

 }

 else if (x>p->element)

 {

 insert(x,p->right);

 if ((bsheight(p->right) - bsheight(p->left))==2)

 {

 if (x > p->right->element)

 p=srr(p);

 else

 p = drr(p);

 }

 }

 else

 cout<<"Element Exists";

 }

 int m,n,d;

 m=bsheight(p->left);

 n=bsheight(p->right);

 d=max(m,n);

 p->height = d + 1;

}

//Finding the Smallest

np bstree::findmin(np p)

{

 if (p==NULL)

 {

 cout<<"Empty Tree ";

 return p;

 }

 else

 {

 while(p->left !=NULL)

 p=p->left;

 return p;

 }

Department of IT Page 64

Date Structures using C++ LAB 2017-2018

}

//Finding the Largest

np bstree::findmax(np p)

{

 if (p==NULL)

 {

 cout<<"Empty Tree ";

 return p;

 }

 else

 {

 while(p->right !=NULL)

 p=p->right;

 return p;

 }

}

//Finding an element

void bstree::find(int x,np &p)

{

 if (p==NULL)

 cout<<" Element not found ";

 else

 if (x < p->element)

 find(x,p->left);

 else

 if (x>p->element)

 find(x,p->right);

 else

 cout<<" Element found !";

}

//Copy a tree

void bstree::copy(np &p,np &p1)

{

 makeempty(p1);

 p1 = nodecopy(p);

}

// Make a tree empty

void bstree::makeempty(np &p)

{

 np d;

 if (p != NULL)

 {

 makeempty(p->left);

 makeempty(p->right);

 d=p;

 free(d);

 p=NULL;

 }

}

Department of IT Page 65

Date Structures using C++ LAB 2017-2018

// Copy the nodes

np bstree::nodecopy(np &p)

{

 np temp;

 if (p==NULL)

 return p;

 else

 {

 temp = new node;

 temp->element = p->element;

 temp->left = nodecopy(p->left);

 temp->right = nodecopy(p->right);

 return temp;

 }

}

// Deleting a node

void bstree::del(int x,np &p)

{

 np d;

 if (p==NULL)

 cout<<"Element not found ";

 else if (x < p->element)

 del(x,p->left);

 else if (x > p->element)

 del(x,p->right);

 else if ((p->left == NULL) && (p->right == NULL))

 {

 d=p;

 free(d);

 p=NULL;

 cout<<" Element deleted !";

 }

 else if (p->left == NULL)

 {

 d=p;

 free(d);

 p=p->right;

 cout<<" Element deleted !";

 }

 else if (p->right == NULL)

 {

 d=p;

 p=p->left;

 free(d);

 cout<<" Element deleted !";

 }

 else

 p->element = deletemin(p->right);

}

Department of IT Page 66

Date Structures using C++ LAB 2017-2018

int bstree::deletemin(np &p)

{

 int c;

 cout<<"inside deltemin";

 if (p->left == NULL)

 {

 c=p->element;

 p=p->right;

 return c;

 }

 else

 {

 c=deletemin(p->left);

 return c;

 }

}

void bstree::preorder(np p)

{

 if (p!=NULL)

 {

 cout<<p->element<<"-->";

 preorder(p->left);

 preorder(p->right);

 }

}

// Inorder Printing

void bstree::inorder(np p)

{

 if (p!=NULL)

 {

 inorder(p->left);

 cout<<p->element<<"-->";

 inorder(p->right);

 }

}

// PostOrder Printing

void bstree::postorder(np p)

{

 if (p!=NULL)

 {

 postorder(p->left);

 postorder(p->right);

 cout<<p->element<<"-->";

 }

}

int bstree::max(int value1, int value2)

{

 return ((value1 > value2) ? value1 : value2);

}

int bstree::bsheight(np p)

Department of IT Page 67

Date Structures using C++ LAB 2017-2018

{

 int t;

 if (p == NULL)

 return -1;

 else

 {

 t = p->height;

 return t;

 }

}

np bstree:: srl(np &p1)

{

 np p2;

 p2 = p1->left;

 p1->left = p2->right;

 p2->right = p1;

 p1->height = max(bsheight(p1->left),bsheight(p1->right)) + 1;

 p2->height = max(bsheight(p2->left),p1->height) + 1;

 return p2;

}

np bstree:: srr(np &p1)

{

 np p2;

 p2 = p1->right;

 p1->right = p2->left;

 p2->left = p1;

 p1->height = max(bsheight(p1->left),bsheight(p1->right)) + 1;

 p2->height = max(p1->height,bsheight(p2->right)) + 1;

 return p2;

}

np bstree:: drl(np &p1)

{

 p1->left=srr(p1->left);

 return srl(p1);

}

np bstree::drr(np &p1)

{

 p1->right = srl(p1->right);

 return srr(p1);

}

int bstree::nonodes(np p)

{

 int count=0;

 if (p!=NULL)

 {

 nonodes(p->left);

 nonodes(p->right);

 count++;

 }

 return count;

Department of IT Page 68

Date Structures using C++ LAB 2017-2018

}

int main()

{

 //clrscr();

 np root,root1,min,max;//,flag;

 int a,choice,findele,delele,leftele,rightele,flag;

 char ch='y';

 bstree bst;

 //system("clear");

 root = NULL;

 root1=NULL;

 while(1)

 {

 cout<<" \nAVL Tree\n";

 cout<<" ========\n";

 cout<<"1.Insertion\n2.FindMin\n";

 cout<<"3.FindMax\n4.Find\n5.Copy\n";

 cout<<"6.Delete\n7.Preorder\n8.Inorder\n";

 cout<<"9.Postorder\n10.height\n11.EXIT\n";

 cout<<"Enter the choice:";

 cin>>choice;

 switch(choice)

 {

 case 1:

 cout<<"New node's value ?";

 cin>>a;

 bst.insert(a,root);

 break;

 case 2:

 if (root !=NULL)

 {

 min=bst.findmin(root);

 cout<<"Min element : "<<min->element;

 }

 break;

 case 3:

 if (root !=NULL)

 {

 max=bst.findmax(root);

 cout<<"Max element : "<<max->element;

 }

 break;

 case 4:

 cout<<"Search node : ";

 cin>>findele;

 if (root != NULL)

 bst.find(findele,root);

 break;

 case 5:

Department of IT Page 69

Date Structures using C++ LAB 2017-2018

 bst.copy(root,root1);

 bst.inorder(root1);

 break;

 case 6:

 cout<<"Delete Node ?";

 cin>>delele;

 bst.del(delele,root);

 bst.inorder(root);

 break;

 case 7:

 cout<<" Preorder Printing... :";

 bst.preorder(root);

 break;

 case 8:

 cout<<" Inorder Printing.... :";

 bst.inorder(root);

 break;

 case 9:

 cout<<" Postorder Printing... :";

 bst.postorder(root);

 break;

 case 10:

 cout<<" Height and Depth is ";

 cout<<bst.bsheight(root);

 //cout<<"No. of nodes:"<<bst.nonodes(root);

 break;

 case 11:exit(0);

 }

 }

 return 0;

}

Assignment:-

Task Date Sign Remark

1. What is a height balanced tree

2. Explain What is the necessity of rotations in AVL tree.

Results

Department of IT Page 70

Date Structures using C++ LAB 2017-2018

Aim: To to implement all the functions of a dictionary (ADT)

Source code:

#include<stdlib.h>

#include<iostream.h>

class node

{

public: int key;

 int value;

 node*next;

};

class dictionary:public node

{ int k,data;

 node *head;

public: dictionary();

 void insert_d();

 void delete_d();

 void display_d();

};

dictionary::dictionary()

{ head=NULL;

}

//code to push an val into dictionary;

void dictionary::insert_d()

{

node *p,*curr,*prev;

 cout<<"Enter an key and value to be inserted:";

 cin>>k;

 cin>>data;

 p=new node;

 p->key=k;

 p->value=data;

 p->next=NULL;

 if(head==NULL)

 head=p;

 else

 {

curr=head;

 while((curr->key<p->key)&&(curr->next!=NULL))

 { prev=curr;

 curr=curr->next;

 }

 if(curr->next==NULL)

 {

 if(curr->key<p->key)

 { curr->next=p;

 prev=curr;

 }

Week 12 : Write a C++ program to implement all the functions of a dictionary (ADT)

Department of IT Page 71

Date Structures using C++ LAB 2017-2018

 else { p->next=prev->next;

 prev->next=p;

 }

 }

 else

 {

p->next=prev->next;

 prev->next=p;

 }

 cout<<"\nInserted into dictionary Sucesfully....\n";

 }

}

void dictionary::delete_d()

{

node*curr,*prev;

 cout<<"Enter key value that you want to delete...";

 cin>>k;

 if(head==NULL)

 cout<<"\ndictionary is Underflow";

 else

 { curr=head;

 while(curr!=NULL)

 {

 if(curr->key==k)

 break;

 prev=curr;

 curr=curr->next;

 }

 }

 if(curr==NULL)

 cout<<"Node not found...";

 else

 {

 if(curr==head)

 head=curr->next;

 else

 prev->next=curr->next;

 delete curr;

 cout<<"Item deleted from dictionary...";

 }

 }

void dictionary::display_d()

{

node*t;

 if(head==NULL)

 cout<<"\ndictionary Under Flow";

 else

 {

 cout<<"\nElements in the dictionary are....\n";

 t=head;

Department of IT Page 72

Date Structures using C++ LAB 2017-2018

 while(t!=NULL)

 {

 cout<<"<"<<t->key<<","<<t->value<<">";

 t=t->next;

 }

 }

}

int main()

{

int choice;

dictionary d1;

 while(1)

 {

 cout<<"\n\n***Menu for Dictrionay operations***\n\n";

 cout<<"1.Insert\n2.Delete\n3.DISPLAY\n4.EXIT\n";

 cout<<"Enter Choice:";

 cin>>choice;

 switch(choice)

 {

 case 1: d1.insert_d();

 break;

 case 2: d1.delete_d();

 break;

 case 3: d1.display_d();

 break;

 case 4: exit(0);

 default:cout<<"Invalid choice...Try again...\n";

 }

 }

}

Assignment:-

Task Date Sign Remark

1. Write a program to implement hash table

2.Explain DFS and BFS

Results

ELECTRICAL AND ELECTRONICS

LABORATORY MANUAL

(FOR CSE & IT)

DEPARTMENT OF ELECTRONICS AND COMMUNICATIONS ENGG

MALLA REDDY COLLEGE OF ENGINEERING AND TECHNOLOGY

(Autonomous Institution – UGC, Govt of India)
(Affiliated to JNTU, Hyderabad)

Secunderabad-14.

LIST OF EXPERIMENTS

PART- A

 S.NO: EXPERIMENT NAME PAGE NO:

1. Verification of KVL and KCL. 2-6

2. Verification of Superposition and Reciprocity theorems. 7-15

3. Verification of Maximum power transfer theorem. 16-18

4. Verification of Thevenin's and Norton’s theorems. 19-24

5. OC and SC tests on single phase transformer. 25-30

6. Load test on single phase transformer. 31-33

PART- B

 S.NO: EXPERIMENT NAME PAGE NO:

7. PN Junction diode characteristics. 65-70

8. Zener diode characteristics. 71-75

9. Half wave rectifier with and without filter. 76-80

10. Full wave rectifier with and without filter. 81-85

11. Transistor CE characteristics (Input and Output). 86-91

12. Transistor CB characteristics (Input and Output). 92-98

E&E LAB ECE, MRCET

 1

PART-A

E&E LAB ECE, MRCET

 2

1. VERIFICATION OF KIRCHOFF’S LAWS

AIM: To verify the Kirchhoff’s voltage law and Kirchhoff’s current law for

the given circuit.

APPARATUS REQUIRED:

S.No Name of the equipment Range Type Quantity

1 RPS 0-30V - 1N0

2 Voltmeter 0-20 V Digital 4 NO

3 Ammeter 0-20mA Digital 4 NO

4 Bread board - - 1 NO

5 Connecting wires - - Required

number.

6

Resistors

470 Ω 2 NO

1kΩ 1 NO

680Ω 1 NO

CIRCUIT DIAGRAMS:

GIVEN CIRCUIT:

 Fig (1)

E&E LAB ECE, MRCET

 3

1. KVL:

 Fig (1a)

PRACTICAL CIRCUIT:

E&E LAB ECE, MRCET

 4

2. KCL:

PRACTICAL CIRCUIT:

 Fig (2b)

E&E LAB ECE, MRCET

 5

THEORY:

a) Kirchhoff’s Voltage law states that the algebraic sum of the voltage

around any closed path in a given circuit is always zero. In any circuit,

voltage drops across the resistors always have polarities opposite to

the source polarity. When the current passes through the resistor, there

is a loss in energy and therefore a voltage drop. In any element, the

current flows from a higher potential to lower potential. Consider the

fig (1a) shown above in which there are 3 resistors are in series.

According to kickoff’s voltage law….

 V = V1 + V2 + V3

b) Kirchhoff’s current law states that the sum of the currents entering a

node equal to the sum of the currents leaving the same node. Consider

the fig(1b) shown above in which there are 3 parallel paths. According

to Kirchhoff’s current law...

 I = I1 + I2 + I3

PROCEDURE:

a) Kirchhoff’s Voltage law:

1. Connect the circuit as shown in fig (2a).

2. Measure the voltages across the resistors.

3. Observe that the algebraic sum of voltages in a closed loop is

zero.

b) Kirchhoff’s current law:

1. Connect the circuit as shown in fig (2b).

2. Measure the currents through the resistors.

3. Observe that the algebraic sum of the currents at a node is zero.

OBSERVATION TABLE:

KVL:

S.NO VOLTAGE

ACCROSS

THEORETICAL PRACTICAL

E&E LAB ECE, MRCET

 6

KCL:

S.NO CURRENT

THROUGH

THEORETICAL PRACTICAL

PRECAUTIONS:

1. Avoid loose connections.

2. Keep all the knobs in minimum position while switch on and off of

the supply.

RESULT:

QUESTIONS:

1. What is another name for KCL & KVL?

2. Define network and circuit?

3. What is the property of inductor and capacitor?

E&E LAB ECE, MRCET

 7

 2. SUPERPOSITION AND RECIPROCITY THEOREMS

A) VERIFICATION OF SUPERPOSITION THEOREM

AIM: To verify the superposition theorem for the given circuit.

APPARATUS REQUIRED:

S.No Name Of The Equipment Range Type Quantity

1 Ammeter (0-20)mA Digital 1 NO

2 RPS 0-30V Digital 1 NO

3

Resistors

2.2k Ω 1 NO

1k Ω 1 NO

560 Ω 1 NO

CIRCUIT DIAGRAM:

E&E LAB ECE, MRCET

 8

PRACTICAL CIRCUITS:

 Fig (2)

WhenV2 source acting (To find I2):

E&E LAB ECE, MRCET

 9

 Fig (3)

THEORY:

SUPERPOSITION THEOREM:

Superposition theorem states that in a lumped ,linear, bilateral network consisting more

number of sources each branch current(voltage) is the algebraic sum all currents (

branch voltages), each of which is determined by considering one source at a time and

removing all other sources. In removing the sources, voltage and current sources are

replaced by internal resistances.
PROCEDURE:

1. Connect the circuit as per the fig (1).

2. Adjust the output voltage of sources X and Y to appropriate values (Say 15V and20V

respectively).

3. Note down the current (IL) through the 560 0hm resistor by using the ammeter.

4. Connect the circuit as per fig (2) and set the source Y (20V) to 0V.

5. Note down the current (IL
l)
 through 560ohm resistor by using ammeter.

6. Connect the circuit as per fig(3) and set the source X (15V) to 0V and source Y to

20V.

7. Note down the current (IL
ll
) through the 560 ohm resistor branch by using ammeter.

8. Reduce the output voltage of the sources X and Y to 0V and switch off the supply.

9. Disconnect the circuit.

E&E LAB ECE, MRCET

 10

TABLER COLUMNS:

E&E LAB ECE, MRCET

 11

PRECAUTIONS:

1. Initially keep the RPS output voltage knob in zero volt position.

2. Set the ammeter pointer at zero position.

3. Take the readings without parallax error.

4. Avoid loose connections.

5. Avoid short circuit of RPS output terminals.

RESULT:

QUESTIONS:

1) What do you man by Unilateral and Bilateral network? Give the limitations of

 Superposition theorem?

2) What are the equivalent internal impedances for an ideal voltage source and for a

Current source?

3) Transform a physical voltage source into its equivalent current source.

E&E LAB ECE, MRCET

 12

(B)RECIPROCITY THEOREM

AIM: To verify the reciprocity theorem for the given circuit.

APPARATUS REQUIRED:

S.No Name Of The Equipment Range Type Quantity

1 Ammeter (0-20)mA Digital 1 NO

2 RPS 0-30V Digital 1 NO

3

Resistors

2.2k Ω 1 NO

10k Ω 1 NO

470 Ω 1 NO

CIRCUIT DIAGRAM:

E&E LAB ECE, MRCET

 13

PRACTICAL CIRCUITS:

 CIRCUIT - 2:

THEORY:

STATEMENT:

In any linear, bilateral, single source network, the ratio of response to the excitation is

same even though the positions of excitation and response are interchanged.

PROCEDURE:

1. Connect the circuit as per the fig (1).

2. Adjust the output voltage of the regulated power supply to an appropriate value (Say

20V).

ammeter.

E&E LAB ECE, MRCET

 14

4. Reduce the output voltage of the RPS to 0V and switch-off the supply.

5. Disconnect the circuit and connect the circuit as per the fig (2).

6. Adjust the output voltage of the regulated power supply to an appropriate value (Say

20V).

7. Note down the current through 10K Ω resistor from ammeter.

8. Reduce the output voltage of the RPS to 0V and switch-off the supply.

9. Disconnect the circuit.

TABULAR FORM:

From fig 1

S. No
Applied voltage

(V1) Volt

Current

IL

(mA)

From fig 2

S. No
Applied voltage

(V2) Volt

Current

IL
I

(mA)

E&E LAB ECE, MRCET

 15

OBSERVATION TABLE:

PRECAUTIONS:

1. Initially keep the RPS output voltage knob in zero volt position.

2. Set the ammeter pointer at zero position.

3. Take the readings without parallax error.

4. Avoid loose connections.

5. Avoid short circuit of RPS output terminals.

6. If voltmeter gives negative reading then interchange the terminals connections of a

voltmeter

RESULT:

QUESTIONS:

1) What is reciprocity theorem?

2) Why it is not applicable for unilateral circuits.

E&E LAB ECE, MRCET

 16

3. MAXIMUM POWER TRANSFER THEOREM

AIM: To verify the maximum power transfer theorem for the given circuit.

APPARTUS REQUIRED:

SI. No Equipment Range Qty

1 DC Voltage source. 0-30V 1

2 Resistors 470 Ω 1

4 Decade resistance

box
0-10k Ω 1

5 Ammeter 0-20mA 1

6 Voltmeter 0-20V 1

7 Connecting wires 1.0.Sq.mm As required

CIRCUIT DIAGRAM:

PRACTICAL CIRCUIT:

E&E LAB ECE, MRCET

 17

THEORY:
STATEMENT:

It states that the maximum power is transferred from the source to load when the load

resistance is equal to the internal resistance of the source.

 (or)

The maximum transformer states that “A load will receive maximum power from a linear

bilateral network when its load resistance is exactly equal to the Thevenin’s resistance of

network, measured looking back into the terminals of network.

PROCEDURE:

1. Connect the circuit as shown in the above figure.

2. Apply the voltage 12V from RPS.

3. Now vary the load resistance (RL) in steps and note down the corresponding Ammeter.

Reading (IL)in milli amps and Load Voltage (VL) volts.

6. Tabulate the readings and find the power for different load resistance values.

7. Draw the graph between Power and Load Resistance.

8. After plotting the graph, the Power will be Maximum, when the Load Resistance will

be equal to source Resistance

E&E LAB ECE, MRCET

 18

TABULAR COLUMN:

S.No

RL(ohms) IL(A) Power(PL)=IL
2
*RL(mW)

1

2

3

4

5

6

7

8

9

10

Theoretical Calculations:-

R = (RS+ RL)=.………………..Ω

IL = V / R =…………..…….mA

Power = (I L
2
) RL=…..…..mW

RESULT:

QUESTIONS:

1) What is maximum power transfer theorem?

2) What is the application this theorem?

E&E LAB ECE, MRCET

 19

4. VERIFICATION OF THEVENIN’S THEOREM AND NORTON’S

THEOREM

AIM: To verify Theremin’s & Norton’s theorems for the given circuit.

APPARATUS REQUIRED:

S.No Name Of The Equipment Range Type Quantity

1 Voltmeter (0-20)V Digital 1 NO

2 Ammeter (0-20)mA Digital 1 NO

3 RPS 0-30V Digital 1 NO

4

Resistors

10K Ω,1K Ω 1 NO

2.2Ω 1 NO

330 Ω 1 NO

5 Breadboard - - 1 NO

6 Connecting wires Required

number

CIRCUIT DIAGRAM:

GIVEN CIRCUIT:

E&E LAB ECE, MRCET

 20

PRACTICAL CIRCUIT DIAGRAMS:

TO FIND IL:

E&E LAB ECE, MRCET

 21

TO FIND IN:

 Fig (4)

STATEMENTS:

THEVENIN’S THEOREM:

It states that in any lumped, linear network having more number of sources and elements

the equivalent circuit across any branch can be replaced by an equivalent circuit

consisting of Theremin’s equivalent voltage source Vth in series with Theremin’s

equivalent resistance Rth. Where Vth is the open circuit voltage across (branch) the two

terminals and Rth is the resistance seen from the same two terminals by replacing all

other sources with internal resistances.

E&E LAB ECE, MRCET

 22

NORTON’S THEOREM:

Norton’s theorem states that in a lumped, linear network the equivalent circuit across any

branch is replaced with a current source in parallel a resistance. Where the current is the

Norton’s current which is the short circuit current though that branch and the resistance is

the Norton’s resistance which is the equivalent resistance across that branch by replacing

all the sources sources with their internal resistances?

E&E LAB ECE, MRCET

 23

From the fig.

PROCEDURE:

1. Connect the circuit as per fig (1)

2. Adjust the output voltage of the regulated power supply to an appropriate value (Say

25V).

3. Note down the response (current, IL) through the branch of interest i.e. AB (ammeter

reading).

4. Reduce the output voltage of the regulated power supply to 0V and switch-off the

supply.

5. Disconnect the circuit and connect as per the fig (2).

6. Adjust the output voltage of the regulated power supply to 25V.

7. Note down the voltage across the load terminals AB (Voltmeter reading) that gives

Vth.

8. Reduce the output voltage of the regulated power supply to 0V and switch-off the

supply.

9. Disconnect the circuit and connect as per the fig (3).

10. Adjust the output voltage of the regulated power supply to an appropriate value (Say

V =25V).

E&E LAB ECE, MRCET

 24

11. Note down the current (I) supplied by the source (ammeter reading).

12. The ratio of V and I gives the Rth.

13. Reduce the output voltage of the regulated power supply to 0V and switch-off the

supply.

14. Disconnect the circuit and connect as per the fig (4).

15. Adjust the output voltage of the regulated power supply to 25V

16. Note down the response (current, IN) through the branch AB (ammeter reading).

17. Reduce the output voltage of the regulated power supply to 0V and switch-off the

supply.

18. Disconnect the circuit

THERITICAL VALUES:

Tabulation for Thevinen’s theorem:

THEORITICAL VALUES PRACTICAL VALUES

 VTh=

 RTH=

 IL=

 VTh=

 RTH=

 IL=

Tabulation for Norton’s theorem:

THEORITICAL VALUES PRACTICAL VALUES

 IN=

 RN=

 IL=

 IN=

 RN=

 IL=

E&E LAB ECE, MRCET

 25

RESULT:

QUESTIONS:

1) The internal resistance of a source is 2 Ohms and is connected with an

 External load of 10 Ohms resistance. What is Rth ?

2) In the above question if the voltage is 10 volts and the load is of 50 ohms

What is the load current and Vth? Verify IL?

3) If the internal resistance of a source is 5 ohms and is connected with an

External load of 25 Ohms resistance. What is Rth?

E&E LAB ECE, MRCET

 26

5. OC & SC TESTS ON 1 – PHASE TRANSFORMER

AIM: To conduct Open circuit and Short circuit tests on 1-phase transformer to pre-

determine the efficiency, regulation and equivalent parameters.

NAME PLATE DETAILS:

Voltage Ratio 220/110V

Full load Current 13.6A

KVA RATING 3KVA

APPARATUS:

S.NO Description Type Range Quantity

1 Ammeter MI
0-20A

0-5A
2no

2 Voltmeter MI
0-150V

0-300V
2no

3 Wattmeter
LPF

UPF

2A,!50V

 20A,300V
2no

4 Auto transformer - 230/0-270V 1no

CIRCUIT DIAGRAM:

OPEN CIRCUIT TEST:

E&E LAB ECE, MRCET

 27

SHORT CIRCUIT TEST:

THEORY:
Transformer is a device which transforms the energy from one circuit to other circuit

without change of frequency.

The performance of any transformer calculated by conducting tests .OC and SC tests are

conducted on transformer to find the efficiency and regulation of the transformer at any

desired power factor.

OC TEST:

The objectives of OC test are

1. To find out the constant losses or iron losses of the transformer.

2. To find out the no load equivalent parameters.

SC TEST:

The objectives of OC test are

1. To find out the variable losses or copper losses of the transformer.

2. To find out the short circuit equivalent parameters.

By calculating the losses and equivalent parameters from the above tests the efficiency

and regulation can be calculated at any desired power factor.

E&E LAB ECE, MRCET

 28

PROCEDURE (OC TEST):

1. Connections are made as per the circuit diagram

2. Initially variac should be kept in its minimum position

3. Close the DPST switch

4. By varying Auto transformer bring the voltage to rated voltage

5. When the voltage in the voltmeter is equal to the rated voltage of HV winding note

down all the readings of the meters.

6. After taking all the readings bring the variac to its minimum position

7. Now switch off the supply by opening the DPST switch.

PROCEDURE (SC TEST):

1. Connections are made as per the circuit diagram.

2. Short the LV side and connect the meters on HV side.

3. Before taking the single phase, 230 V, 50 Hz supply the variac should be in minimum

position.

4. Now close the DPST switch so that the supply is given to the transformer.

5. By varying the variac when the ammeter shows the rated current

(i.e. 13. 6A) then note down all the readings.

6. Bring the variac to minimum position after taking the readings and switch off the

supply.

E&E LAB ECE, MRCET

 29

CALCULATIONS:

(a)Calculation of Equivalent circuit parameters:

Let the transformer be the step down transformer.

E&E LAB ECE, MRCET

 30

O.C TEST OBSERVATIONS:

S.NO V0(VOLTS) I0(AMPS) W0(watts)

S.C TEST OBSERVATIONS:

S.NO VSC(VOLTS) ISC(AMPS) WSC(watts)

E&E LAB ECE, MRCET

 31

TBULAR COLUMN:

S.NO % OF LOAD EFFICIENCY

TABULATION:

LAGGING POWER FACTOR LEADING POWER FACTOR

SNO PF %REG SNO PF %REG

1 0.3 0.3

2 0.4 0.4

3 0.5 0.5

4 0.6 0.6

5 0.7 0.7

6 0.8 0.8

7 0.9 0.9

8 UNITY UNITY

MODEL GRAPHS:

1. EFFICIENCY VS OUTPUT

E&E LAB ECE, MRCET

 32

2. EFFICIENCY VS POWER FACTOR

RESULT:

QUESTIONS:

1) What is a transformer?

2) Draw the equivalent circuit of transformer?

3) What is the efficiency and regulation of transformer?

E&E LAB ECE, MRCET

 33

6. LOAD TEST ON 1-PHASE TRANSFORMER

AIM: To find out efficiency by conducting the load test on 1- Transformer.

APPARATUS:

S.NO APPARATUS TYPE RANGE QUANTITY

1 1- AUTO

Transformer

VARIABLE

VOLTAGE

0-270V 01

2 1- Transformer Shell type 220/110V 01

3 Voltmeter MI 0-300V 01

4 Ammeter MI 0-20A 01

5 Resistive load Rheostat &

variable

0-20A 01

6 Wattmeter UPF 300V/20A 01

7 Connecting wires Required

number

CIRCUIT DIAGRAM:

RESISTIVE LOAD

E&E LAB ECE, MRCET

 34

R-L LOAD

PROCEDURE:

1) Connect the circuit as shown in above fig.

2) Switch on the input AC supply.

3) Slowly vary the auto transformer knob up to rated input voltage of

main transformer.

4) Apply the load slowly up to rated current of the transformer.

5) Take down the voltmeter and ammeter readings.

6) Draw the graph between efficiency and output power.

TABULAR COLUMN (RESISTIVE LOAD):

S.NO Load Current

(amps)

Voltage

(volts)

E&E LAB ECE, MRCET

 35

TABULAR COLUMN(R-L LOAD)

OBSERVATION TBLE:

S.NO % OF LOAD EFFICIENCY

MODEL GRAPHS:

EFFICIENCY VS OUTPUT

RESULT:

QUESTIONS:

1) What is load test on transformer and what is the advantage of this test?

2) What is other test to determine the efficiency and regulation of

transformer

S.NO Load Current

(amps)

Voltage

(volts)

E&E LAB ECE, MRCET

 36

PART-B

E&E LAB ECE,MRCET

37

1. BASIC ELECTRONIC COMPONENTS

1.1. COLOUR CODING OF RESISTOR

Colour Codes are used to identify the value of resistor. The numbers to the Colour are identified

in the following sequence which is remembered as BBROY GREAT BRITAN VERY GOOD

WIFE (BBROYGBVGW) and their assignment is listed in following table.

Black Brown Red Orange Yellow Green Blue Violet Grey White

0 1 2 3 4 5 6 7 8 9

Table1: Colour codes of resistor

First find the tolerance band, it will typically be gold (5%) and

sometimes silver (10%).

Starting from the other end, identify the first band - write down the

number associated with that color

Now read the next color, so write down a its vale next to the first

value.

Now read the third or 'multiplier exponent' band and write down that as

the number of zeros.

If the 'multiplier exponent' band is Gold move the decimal point one to

the left. If the 'multiplier exponent' band is Silver move the decimal point

two places to the left. If the resistor has one more band past the tolerance

band it is a quality band.

Read the number as the '% Failure rate per 1000 hour' This is rated

assuming full wattage being applied to the resistors. (To get better failure

rates, resistors are typically specified to have twice the needed wattage

dissipation that the circuit produces). Some resistors use this band for

temco information. 1% resistors have three bands to read digits to the

left of the multiplier. They have a different temperature coefficient in

order to provide the 1% tolerance. At 1% the temperature coefficient

starts to become an important factor. at +/-200 ppm a change in

temperature of 25 Deg C causes a value change of up to 1%

Table2: procedure to find the value of resistor using Colour codes

http://wiki.xtronics.com/index.php/Image:Resist.jpg

E&E LAB ECE,MRCET

38

1.2. COLOUR CODING OF CAPACITORS

An electrical device capable of storing electrical energy. In general, a

capacitor consists of two metal plates insulated from each other by a dielectric. The

capacitance of a capacitor depends primarily upon its shape and size and upon the

relative permittivity εr of the medium between the plates. In vacuum, in air, and in

most gases, εr ranges from one to several hundred..

One classification of capacitors comes from the physical state of their

dielectrics, which may be gas (or vacuum), liquid, solid, or a combination of these.

Each of these classifications may be subdivided according to the specific dielectric

used. Capacitors may be further classified by their ability to be used in alternating-

current (ac) or direct-current (dc) circuits with various current levels.

 Capacitor Identification Codes: There are no international agreements in place to

standardize capacitor identification. Most plastic film types (Figure1) have

printed values and are normally in microfarads or if the symbol is n,

Nanofarads. Working voltage is easily identified. Tolerances are upper case

letters: M = 20%, K = 10%, J = 5%, H = 2.5% and F = ± 1pF.

Figure 1: Plastic Film Types

A more difficult scheme is shown in Figure 2 where K is used for indicating

Picofarads. The unit is picofarads and the third number is a multiplier. A capacitor

coded 474K63 means 47 × 10000 pF which is equivalent to 470000 pF or 0.47

microfarads. K indicates 10% tolerance. 50, 63 and 100 are working volts.

E&E LAB ECE,MRCET

39

Figure 2: Picofarads Representation

Ceramic disk capacitors have many marking schemes. Capacitance,

tolerance, working voltage and temperature coefficient may be found. which is as

shown in figure 3. Capacitance values are given as number without any

identification as to units. (uF, nF, pF) Whole numbers usually indicate pF and

decimal numbers such as 0.1 or 0.47 are microfarads. Odd looking numbers such

as 473 is the previously explained system and means 47 nF.

Figure3: ceramic Disk capacitor

E&E LAB ECE,MRCET

40

Figure 4: miscellaneous schemes.

 Electrolytic capacitor properties

There are a number of parameters of importance beyond the basic capacitance and

capacitive reactance when using electrolytic capacitors. When designing circuits

using electrolytic capacitors it is necessary to take these additional parameters into

consideration for some designs, and to be aware of them when using electrolytic

capacitors

 ESR Equivalent series resistance:

Electrolytic capacitors are often used in circuits where current levels are

relatively high. Also under some circumstances and current sourced from them

needs to have low source impedance, for example when the capacitor is being

used in a power supply circuit as a reservoir capacitor. Under these conditions it

is necessary to consult the manufacturers’ datasheets to discover whether the

electrolytic capacitor chosen will meet the requirements for the circuit. If the

ESR is high, then it will not be able to deliver the required amount of current in

the circuit, without a voltage drop resulting from the ESR which will be seen as

a source resistance.

E&E LAB ECE,MRCET

41

 Frequency response:

One of the problems with electrolytic capacitors is that they have a limited

frequency response. It is found that their ESR rises with frequency and this

generally limits their use to frequencies below about 100 kHz. This is

particularly true for large capacitors, and even the smaller electrolytic

capacitors should not be relied upon at high frequencies. To gain exact details it

is necessary to consult the manufacturer’s data for a given part.

 Leakage:

 Although electrolytic capacitors have much higher levels of capacitance for a

given volume than most other capacitor technologies, they can also have a

higher level of leakage. This is not a problem for most applications, such as

when they are used in power supplies. However under some circumstances they

are not suitable. For example they should not be used around the input circuitry

of an operational amplifier. Here even a small amount of leakage can cause

problems because of the high input impedance levels of the op-amp. It is also

worth noting that the levels of leakage are considerably higher in the reverse

direction.

 Ripple current:

When using electrolytic capacitors in high current applications such as the

reservoir capacitor of a power supply, it is necessary to consider the ripple

current it is likely to experience. Capacitors have a maximum ripple current

they can supply. Above this they can become too hot which will reduce their

life. In extreme cases it can cause the capacitor to fail. Accordingly it is

necessary to calculate the expected ripple current and check that it is within the

manufacturer’s maximum ratings.

 Tolerance:

Electrolytic capacitors have a very wide tolerance. Typically this may be -50%

+ 100%. This is not normally a problem in applications such as decoupling or

power supply smoothing, etc. However they should not be used in circuits

where the exact value is of importance.

E&E LAB ECE,MRCET

42

 Polarization:

Unlike many other types of capacitor, electrolytic capacitors are polarized and

must be connected within a circuit so that they only see a voltage across them in

a particular way.

The physical appearance of electrolytic capacitor is as shown in Figure 5.The

capacitors themselves are marked so that polarity can easily be seen. In addition to

this it is common for the can of the capacitor to be connected to the negative

terminal.

Figure 5: Electrolytic capacitor

 It is absolutely necessary to ensure that any electrolytic capacitors are connected

within a circuit with the correct polarity. A reverse bias voltage will cause the

centre oxide layer forming the dielectric to be destroyed as a result of

electrochemical reduction. If this occurs a short circuit will appear and excessive

current can cause the capacitor to become very hot. If this occurs the component

may leak the electrolyte, but under some circumstances they can explode. As this is

not uncommon, it is very wise to take precautions and ensure the capacitor is fitted

correctly, especially in applications where high current capability exists.

1.3. COLOUR CODING OF INDUCTORS

 Inductor is just coil wound which provides more reactance for high frequencies

and low reactance for low frequencies.

 Molded inductors follow the same scheme except the units are usually

micro henries. A brown-black-red inductor is most likely a 1000 uH. Sometimes a

silver or gold band is used as a decimal point. So a red-gold-violet inductor would

be a 2.7 uH. Also expect to see a wide silver or gold band before the first value

band and a thin tolerance band at the end. The typical Colour codes and their

values are shown in Figure 6.

E&E LAB ECE,MRCET

43

 1000uH (1millihenry), 2%

 6.8 uH, 5%

 Figure 6: Typical inductors Colour coding and their values.

E&E LAB ECE,MRCET

44

2. CIRCUIT SYMBOLS

WIRES AND CONNECTIONS

S.NO

.

COMPONENT

NAME

CIRCUIT SYMBOL FUNCTION

1 WIRE

 To pass current very easily

from one part of a circuit to

another.

2 WIRES JOINED

A 'blob' should be drawn

where wires are connected

(joined), but it is sometimes

omitted. Wires connected at

'crossroads' should be

staggered slightly to form

two T-junctions, as shown on

the right.

3 WIRES NOT

JOINED

In complex diagrams it is

often necessary to draw

wires crossing even though

they are not connected. I

prefer the 'bridge' symbol

shown on the right because

the simple crossing on the

left may be misread as a join

where you have forgotten to

add a 'blob'.

POWER SUPPLIES

S.NO COMPONENT

NAME

CIRCUIT SYMBOL FUNCTION

1. CELL

Supplies electrical energy.

The larger terminal (on the

left) is positive (+).

A single cell is often called a

battery, but strictly a battery

is two or more cells joined

together

2. BATTERY

Supplies electrical energy. A

battery is more than one cell.

The larger terminal (on the

left) is positive (+).

3. DC SUPPLY

Supplies electrical energy.

DC = Direct Current, always

E&E LAB ECE,MRCET

45

flowing in one direction.

4. AC SUPPLY

Supplies electrical energy.

AC = Alternating Current,

continually changing

direction.

5. FUSE

A safety device which will

'blow' (melt) if the current

flowing through it exceeds a

specified value.

6. TRANSFORMER

Two coils of wire linked by

an iron core. Transformers

are used to step up (increase)

and step down (decrease) AC

voltages. Energy is

transferred between the coils

by the magnetic field in the

core. There is no electrical

connection between the coils.

7. EARTH(GROUND)

A connection to earth. For

many electronic circuits this

is the 0V (zero volts) of the

power supply, but for mains

electricity and some radio

circuits it really means the

earth. It is also known as

ground.

Output Devices: Lamps, Heater, Motor, etc.

S.NO COMPONENT

NAME

CIRCUIT SYMBOL FUNCTION

1. LAMP(LIGHTING)

A transducer which converts

electrical energy to light.

This symbol is used for a

lamp providing illumination,

for example a car headlamp

or torch bulb

2.

LAMP(INDICATOR)

A transducer which converts

electrical energy to light.

This symbol is used for a

lamp which is an indicator,

for example a warning light

on a car dashboard.

3.

HEATER

A transducer which converts

electrical energy to heat.

E&E LAB ECE,MRCET

46

4. MOTOR

A transducer which converts

electrical energy to kinetic

energy (motion).

5.

BELL

A transducer which converts

electrical energy to sound.

6.

BUZZER

A transducer which converts

electrical energy to sound.

7. INDUCTOR(SOLIN

OID,COIL)

 A coil of wire which creates

a magnetic field when

current passes through it. It

may have an iron core inside

the coil. It can be used as a

transducer converting

electrical energy to

mechanical energy by

pulling on something.

Switches

S.NO COMPONENT

NAME

CIRCUIT SYMBOL FUNCTION

1. PUSH

SWITCH(PUSH TO

MAKE)

A push switch allows current

to flow only when the button

is pressed. This is the switch

used to operate a doorbell.

2. PUSH TO BREAK

SWITCH

 This type of push switch is

normally closed (on), it is

open (off) only when the

button is pressed.

3. ON/OFF

SWITCH(SPST)

SPST = Single Pole, Single

Throw.

An on-off switch allows

current to flow only when it

is in the closed (on) position.

4. 2 WAY

SWITCH(SPDT)

SPDT = Single Pole, Double

Throw. A 2-way changeover

switch directs the flow of

current to one of two routes

according to its position.

Some SPDT switches have a

central off position and are

described as 'on-off-on'.

E&E LAB ECE,MRCET

47

5. DUAL ON-OFF

SWITCH(DPST)

DPST = Double Pole, Single

Throw.

A dual on-off switch which

is often used to switch mains

electricity because it can

isolate both the live and

neutral connections.

6. REVERSING

SWITCH(DPDT)

DPDT = Double Pole,

Double Throw.

This switch can be wired up

as a reversing switch for a

motor. Some DPDT switches

have a central off position.

7. RELAY

An electrically operated

switch, for example a 9V

battery circuit connected to

the coil can switch a 230V

AC mains circuit.

NO = Normally Open,

COM = Common,

NC = Normally Closed.

RESISTORS

S.NO COMPONENT

NAME

CIRCUIT SYMBOL FUNCTION

1. RESISTOR

 Or

A resistor restricts the flow

of current, for example to

limit the current passing

through an LED. A resistor

is used with a capacitor in

a timing circuit.

2.

VARIABLE

RESISTOR(RHEOST

AT)

This type of variable

resistor with 2 contacts (a

rheostat) is usually used to

control current. Examples

include: adjusting lamp

brightness, adjusting motor

speed, and adjusting the

rate of flow of charge into

a capacitor in a timing

circuit.

E&E LAB ECE,MRCET

48

3. VARIABLE

RESISTOR(POTENT

IOMETER)

This type of variable

resistor with 3 contacts (a

potentiometer) is usually

used to control voltage. It

can be used like this as a

transducer converting

position (angle of the

control spindle) to an

electrical signal

4. VARIABLE

RESISTER(PRESET)

This type of variable

resistor (a preset) is

operated with a small

screwdriver or similar tool.

It is designed to be set

when the circuit is made

and then left without

further adjustment. Presets

are cheaper than normal

variable resistors so they

are often used in projects to

reduce the cost

CAPACITORS

S.NO NAME OF THE

COMPONENT
CIRCUIT SYMBOL

FUNCTION OF THE

COMPONENT

1. CAPACITOR

A capacitor stores electric

charge. A capacitor is used

with a resistor in a timing

circuit. It can also be used

as a filter, to block DC

signals but pass AC

signals.

2.

CAPACITOR

POLARISED

A capacitor stores electric

charge. This type must be

connected the correct way

round. A capacitor is used

with a resistor in a timing

circuit. It can also be used

as a filter, to block DC

signals but pass AC

signals.

3.
VARIABLE

CAPACITOR

A variable capacitor is

used in a radio tuner.

E&E LAB ECE,MRCET

49

3.

TRIMMER

CAPACITOR

This type of variable

capacitor (a trimmer) is

operated with a small

screwdriver or similar tool.

It is designed to be set

when the circuit is made

and then left without

further adjustment

DIODES

S.NO NAME OF THE

COMPONENT
CIRCUIT SYMBOL

FUNCTION OF THE

COMPONENT

1.

DIODE

A device which only

allows current to flow in

one direction

2.
LED(LIGHT

EMITTING DIODE)

A transducer which

converts electrical energy

to light.

3.

ZENER DIODE

A special diode which is

used to maintain a fixed

voltage across its terminals

4. Photodiode

A light-sensitive diode.

TRANSISTORS

S.NO NAME OF THE

COMPONENT
CIRCUIT SYMBOL

FUNCTION OF THE

COMPONENT

5.

TRANSISTOR NPN

A transistor amplifies

current. It can be used with

other components to make

an amplifier or switching

circuit.

6.

TRANSISTOR PNP

A transistor amplifies

current. It can be used with

other components to make

an amplifier or switching

circuit.

E&E LAB ECE,MRCET

50

7.

PHOTO

TRANSISTOR

A light-sensitive transistor.

AUDIO AND RADIO DEVICES

S.NO NAME OF THE

COMPONENT
CIRCUIT SYMBOL

FUNCTION OF THE

COMPONENT

1.

MICROPHONE

A transducer which

converts sound to electrical

energy.

2.

EARPHONE

A transducer which

converts electrical energy

to sound.

3.

LOUD SPEAKER

A transducer which

converts electrical energy

to sound.

4.
PIEZO

TRANSDUCER

A transducer which

converts electrical energy

to sound.

5.

AMPLIFIER(GENER

AL SYMBOL)

An amplifier circuit with

one input. Really it is a

block diagram symbol

because it represents a

circuit rather than just one

component.

6.

ARIEL (ANTENNA)

A device which is designed

to receive or transmit radio

signals. It is also known as

an antenna

Meters and Oscilloscope

S.NO NAME OF THE

COMPONENT
CIRCUIT SYMBOL

FUNCTION OF THE

COMPONENT

1.

VOLTMETER

A voltmeter is used to

measure voltage. The

Proper name for voltage is

E&E LAB ECE,MRCET

51

'potential difference', but

most people prefer to say

voltage.

2.

AMMETTER

An ammeter is used to

measure current

3.

GALVANOMETER

A galvanometer is a very

sensitive meter which is

used to measure tiny

currents, usually 1mA or

less

4.

OHEMMETER

An ohmmeter is used to

measure resistance. Most

multimeters have an

ohmmeter setting.

5.

OSCILLOSCOPE

An oscilloscope is used to

display the shape of

electrical signals and it can

be used to measure their

voltage and time period.

Sensors (input devices)

S.NO NAME OF THE

COMPONENT
CIRCUIT SYMBOL

FUNCTION OF THE

COMPONENT

1.

LDR

A transducer which

converts brightness (light)

to resistance (an electrical

property). LDR = Light

Dependent Resistor

2.

THERMISTOR

A transducer which

converts temperature (heat)

to resistance (an electrical

property).

E&E LAB ECE,MRCET

52

3. STUDY OF CRO

An oscilloscope is a test instrument which allows us to look at the 'shape' of

electrical signals by displaying a graph of voltage against time on its screen. It is

like a voltmeter with the valuable extra function of showing how the voltage varies

with time. A graticule with a 1cm grid enables us to take measurements of voltage

and time from the screen.

The graph, usually called the trace, is drawn by a beam of electrons striking

the phosphor coating of the screen making it emit light, usually green or blue. This

is similar to the way a television picture is produced.

Oscilloscopes contain a vacuum tube with a cathode (negative electrode) at

one end to emit electrons and an anode (positive electrode) to accelerate them so

they move rapidly down the tube to the screen. This arrangement is called an

electron gun. The tube also contains electrodes to deflect the electron beam

up/down and left/right.

The electrons are called cathode rays because they are emitted by the

cathode and this gives the oscilloscope its full name of cathode ray oscilloscope or

CRO. A dual trace oscilloscope can display two traces on the screen, allowing us

to easily compare the input and output of an amplifier for example. It is well worth

paying the modest extra cost to have this facility.

Figure1 : Front Panel of CRO

E&E LAB ECE,MRCET

53

 BASIC OPERATION:

Figure2: Internal Blocks of CRO

 Setting up an oscilloscope:

Oscilloscopes are complex instruments with many controls and they require some

care to set up and use successfully. It is quite easy to 'lose' the trace off the screen

if controls are set wrongly.

 There is some variation in the arrangement and labeling of the many controls

so the following instructions may need to be adapted for this instrument.

1. Switch on the oscilloscope to warm up (it takes a minute or two).

2. Do not connect the input lead at this stage.

3. Set the AC/GND/DC switch (by the Y INPUT) to DC.

4. Set the SWP/X-Y switch to SWP (sweep).

5. Set Trigger Level to AUTO.

6. Set Trigger Source to INT (internal, the y input).

7. Set the Y AMPLIFIER to 5V/cm (a moderate value).

8. Set the TIMEBASE to 10ms/cm (a moderate speed).

9. Turn the time base VARIABLE control to 1 or CAL.

10. Adjust Y SHIFT (up/down) and X SHIFT (left/right) to give a trace across

the middle of the screen, like the picture.

11. Adjust INTENSITY (brightness) and FOCUS to give a bright, sharp trace.

The following type of trace is observed on CRO after setting up, when there is

no input signal connected.

fluorescent screen

Y plates

X plates

electron gun

anode

cathode

Electron beam

E&E LAB ECE,MRCET

54

Figure 3: Absence of input signal

 Connecting an oscilloscope:

The Y INPUT lead to an oscilloscope should be a co-axial lead and the figure 4

shows its construction. The central wire carries the signal and the screen is

connected to earth (0V) to shield the signal from electrical interference (usually

called noise).

 Figure4: Construction of a co-axial lead

Most oscilloscopes have a BNC socket for the y input and the lead is connected

with a push and twist action, to disconnect we need to twist and pull. Professionals

use a specially designed lead and probes kit for best results with high frequency

signals and when testing high resistance circuits, but this is not essential for

simpler work at audio frequencies (up to 20kHz).

E&E LAB ECE,MRCET

55

Figure 5: Oscilloscope lead and probes kit

Obtaining a clear and stable trace:

Once if we connect the oscilloscope to the circuit, it is necessary to adjust the

controls to obtain a clear and stable trace on the screen in order to test it.

 The Y AMPLIFIER (VOLTS/CM) control determines the height of the

trace. Choose a setting so the trace occupies at least half the screen height,

but does not disappear off the screen.

 The TIMEBASE (TIME/CM) control determines the rate at which the dot

sweeps across the screen. Choose a setting so the trace shows at least one

cycle of the signal across the screen. Note that a steady DC input signal

gives a horizontal line trace for which the time base setting is not critical.

 The TRIGGER control is usually best left set to AUTO.

Figure 6 : Stable waveform

E&E LAB ECE,MRCET

56

 Measuring voltage and time period

The trace on an oscilloscope screen is a graph of voltage against time. The

shape of this graph is determined by the nature of the input signal. In addition to

the properties labeled on the graph, there is frequency which is the number of

cycles per second. The diagram shows a sine wave but these properties apply to

any signal with a constant shape

Figure7: Properties of trace

 Amplitude is the maximum voltage reached by the signal. It is measured in

volts.

 Peak voltage is another name for amplitude.

 Peak-peak voltage is twice the peak voltage (amplitude). When reading an

oscilloscope trace it is usual to measure peak-peak voltage.

 Time period is the time taken for the signal to complete one cycle.

It is measured in seconds (s), but time periods tend to be short so milliseconds

(ms) and microseconds (µs) are often used. 1ms = 0.001s and

1µs = 0.000001s.

 Frequency is the number of cycles per second. It is measured in hertz (Hz),

but frequencies tend to be high so kilohertz (kHz) and megahertz (MHz) are

often used. 1kHz = 1000Hz and 1MHz = 1000000Hz.

Frequency = 1
 Time period

E&E LAB ECE,MRCET

57

 Time period = 1
 Frequency

A) Voltage: Voltage is shown on the vertical y-axis and the scale is determined

by the Y AMPLIFIER (VOLTS/CM) control. Usually peak-peak voltage is

measured because it can be read correctly even if the position of 0V is not

known. The amplitude is half the peak-peak voltage.

Voltage = distance in cm × volts/cm

 B) Time period: Time is shown on the horizontal x-axis and the scale is

determined by the TIMEBASE (TIME/CM) control. The time period (often just

called period) is the time for one cycle of the signal. The frequency is the number

of cycles per second, frequency = 1/time period.

Time = distance in cm × time/cm

E&E LAB ECE,MRCET

58

4. STUDY OF FUNCTION GENERATOR

A function generator is a device that can produce various patterns of voltage at a

variety of frequencies and amplitudes. It is used to test the response of circuits to

common input signals. The electrical leads from the device are attached to the

ground and signal input terminals of the device under test.

Figure 1: A typical low-cost function generator.

http://en.wikipedia.org/wiki/File:Kenwood_FG273_Function_Generator.jpg

E&E LAB ECE,MRCET

59

Features and controls :

Most function generators allow the user to choose the shape of the output from a small

number of options.

 Square wave - The signal goes directly from high to low voltage.

Figure 2: Square wave

The duty cycle of a signal refers to the ratio of high voltage to low voltage time in a square wave

signal.

 Sine wave - The signal curves like a sinusoid from high to low voltage.

Figure3: Sine Wave

E&E LAB ECE,MRCET

60

 Triangle wave - The signal goes from high to low voltage at a fixed rate.

Figure4: Triangular Wave

The amplitude control on a function generator varies the voltage difference

between the high and low voltage of the output signal. The direct current (DC)

offset control on a function generator varies the average voltage of a signal relative

to the ground.

The frequency control of a function generator controls the rate at which output

signal oscillates. On some function generators, the frequency control is a

combination of different controls. One set of controls chooses the broad frequency

range (order of magnitude) and the other selects the precise frequency. This allows

the function generator to handle the enormous variation in frequency scale needed

for signals.

 How to use a function generator

After powering on the function generator, the output signal needs to be

configured to the desired shape. Typically, this means connecting the signal and

ground leads to an oscilloscope to check the controls. Adjust the function generator

until the output signal is correct, then attach the signal and ground leads from the

function generator to the input and ground of the device under test. For some

applications, the negative lead of the function generator should attach to a negative

input of the device, but usually attaching to ground is sufficient.

E&E LAB ECE,MRCET

61

5. STUDY OF REGULATED POWER SUPPLY

There are many types of power supply. Most are designed to convert high

voltage AC mains electricity to a suitable low voltage supply for electronic circuits

and other devices. A power supply can by broken down into a series of blocks,

each of which performs a particular function. For example a 5V regulated supply:

Figure1: Block Diagram of Regulated power supply

Each of the blocks is described in more detail below:

 Transformer: Steps down high voltage AC mains to low voltage AC.

 Rectifier: Converts AC to DC, but the DC output is varying.

 Smoothing: Smooths the DC from varying greatly to a small ripple.

 Regulator: Eliminates ripple by setting DC output to a fixed voltage.

 Dual Supplies:

Some electronic circuits require a power supply with positive and negative

outputs as well as zero volts (0V). This is called a 'dual supply' because it is like

two ordinary supplies connected together as shown in the diagram. Dual

supplies have three outputs, for example a ±9V supply has +9V, 0V and -9V

outputs.

Figure

2:

Dual

Supply

E&E LAB ECE,MRCET

62

6. TYPES OF CIRCUIT BOARD

 Breadboard:

This is a way of making a temporary circuit, for testing purposes or to try

out an idea. No soldering is required and all the components can be re-used

afterwards. It is easy to change connections and replace components. Almost

all the Electronics Club projects started life on a breadboard to check that the

circuit worked as intended. The following figure depicts the appearance of

Bread board in which the holes in top and bottom stribes are connected

horizontally that are used for power supply and ground connection

conventionally and holes on middle stribes connected vertically. And that

are used for circuit connections conventionally.

Figure 1: Bread board

 Strip board:

Figure 2: Strib board

E&E LAB ECE,MRCET

63

Strip board has parallel strips of copper track on one side. The strips are 0.1"

(2.54mm) apart and there are holes every 0.1" (2.54mm). Strip board requires no

special preparation other than cutting to size. It can be cut with a junior hacksaw,

or simply snap it along the lines of holes by putting it over the edge of a bench or

table and pushing hard.

Printed Circuit Board: A printed circuit board, or PCB, is used to mechanically

support and electrically connect electronic components using conductive pathways,

tracks or traces etched from copper sheets laminated onto a non-conductive

substrate. It is also referred to as printed wiring board (PWB) or etched wiring

board. A PCB populated with electronic components is a printed circuit assembly

(PCA), also known as a printed circuit board assembly (PCBA).

 Printed circuit boards have copper tracks connecting the holes where

the components are placed. They are designed specially for each circuit and make

construction very easy. However, producing the PCB requires special equipment

so this method is not recommended if you are a beginner unless the PCB is

provided for you.

Figure 3: Printed circuit board

http://en.wikipedia.org/wiki/Electronic_component
http://en.wikipedia.org/wiki/Conductor_(material)
http://en.wikipedia.org/wiki/Signal_trace
http://en.wikipedia.org/wiki/Industrial_etching
http://en.wikipedia.org/wiki/Laminated

E&E LAB ECE,MRCET

64

PCBs are inexpensive, and can be highly reliable. They require much more layout

effort and higher initial cost than either wire-wrapped or point-to-point constructed

circuits, but are much cheaper and faster for high-volume production. Much of the

electronics industry's PCB design, assembly, and quality control needs are set by

standards that are published by the IPC organization.

http://en.wikipedia.org/wiki/Wire_wrap
http://en.wikipedia.org/wiki/Point-to-point_construction
http://en.wikipedia.org/wiki/IPC_(electronics)

E&E LAB ECE,MRCET

65

7. P-N JUNCTION DIODE CHARACTERISTICS

AIM:

1. To observe and draw the Forward and Reverse bias V-I Characteristics of

a P-N Junction diode.

2. To calculate static and dynamic resistance in both forward and Reverse

Bias conditions.

APPARATUS:

 1. P-N Diode IN4007 - 1No.

 2. Regulated Power supply (0-30V) - 1No.

 3. Resistor 1KΩ - 1No.

 4. Ammeter (0-20 mA) - 1No

 5. Ammeter (0-200µA) - 1No.

 6. Voltmeter (0-20V) - 2No.

 7. Bread board

 8. Connecting wires

THEORY:

 A p-n junction diode conducts only in one direction. The V-I characteristics of

the diode are curve between voltage across the diode and current flowing through

the diode. When external voltage is zero, circuit is open and the potential barrier

does not allow the current to flow. Therefore, the circuit current is zero. When P-

type (Anode) is connected to +ve terminal and n- type (cathode) is connected to –

ve terminal of the supply voltage is known as forward bias. The potential barrier is

reduced when diode is in the forward biased condition. At some forward voltage,

the potential barrier altogether eliminated and current starts flowing through the

E&E LAB ECE,MRCET

66

diode and also in the circuit. Then diode is said to be in ON state. The current

increases with increasing forward voltage.

 When N-type (cathode) is connected to +ve terminal and P-type

(Anode) is connected –ve terminal of the supply voltage is known as reverse

bias and the potential barrier across the junction increases. Therefore, the junction

resistance becomes very high and a very small current (reverse saturation current)

flows in the circuit. Then diode is said to be in OFF state. The reverse bias current

is due to minority charge carriers.

CIRCUIT DIAGRAM:

A) Forward bias:

 B) Reverse Bias:

E&E LAB ECE,MRCET

67

MODEL GRAPH:

PROCEDURE:

A) FORWARD BIAS:

1. Connections are made as per the circuit diagram.

2. For forward bias, the RPS +ve is connected to the anode of the diode and

 RPS –ve is connected to the cathode of the diode

3. Switch on the power supply and increases the input voltage (supply voltage) in

 Steps of 0.1V

4. Note down the corresponding current flowing through the diode and voltage

 across the diode for each and every step of the input voltage.

5. The reading of voltage and current are tabulated.

6. Graph is plotted between voltage (Vf) on X-axis and current (If) on Y-axis.

B) REVERSE BIAS:

 1. Connections are made as per the circuit diagram

 2. For reverse bias, the RPS +ve is connected to the cathode of the diode and

 RPS –ve is connected to the anode of the diode.

3. Switch on the power supply and increase the input voltage (supply voltage) in

 Steps of 1V.

E&E LAB ECE,MRCET

68

4. Note down the corresponding current flowing through the diode voltage across

 the diode for each and every step of the input voltage.

5. The readings of voltage and current are tabulated

6. Graph is plotted between voltage (VR) on X-axis and current (IR) on Y-axis.

PRECAUTIONS:

1. All the connections should be correct.

2. Parallax error should be avoided while taking the readings from the Analog

meters.

VIVA QUESTIONS:

1. Define depletion region of a diode?

2. What is meant by transition & space charge capacitance of a diode?

3. Is the V-I relationship of a diode Linear or Exponential?

4. Define cut-in voltage of a diode and specify the values for Si and Ge diodes?

5. What are the applications of a p-n diode?

6. Draw the ideal characteristics of P-N junction diode?

7. What is the diode equation?

8. What is PIV?

9. What is the break down voltage?

10. What is the effect of temperature on PN junction diodes?

E&E LAB ECE,MRCET

69

OBSERVATIONS:

A) FORWARD BIAS:

S.NO Applied Voltage(V) Forward Voltage(Vf) Forward

Current(If(mA))

B) REVERSE BIAS:

S.NO Applied Voltage(V) Reverse Voltage(VR) Reverse

Current(IR(µA))

E&E LAB ECE,MRCET

70

RESULT:

 Calculating Static and Dynamic Resistance of given diode.

In forward bias condition:

Static Resistance , Rs = Vf/If =

Dynamic Resistance, RD = ∆Vf/ ∆If =

In Reverse bias condition:

Static Resistance , Rs = VR/IR =

Dynamic Resistance, RD = ∆VR/ ∆IR =

E&E LAB ECE,MRCET

71

8. ZENER DIODE CHARACTERISTICS

 AIM:

 To observe and draw the static characteristics of a zener diode

 APPARATUS:

 1. Zener diode -1No.

 2. Regulated Power Supply (0-30v) -1No.

 3. Voltmeter (0-20v) -1No.

 4. Ammeter (0-20mA) -1No.

 5. Resistor (1K ohm)

 6. Bread Board

 7. Connecting wires

THEORY:

 A zener diode is heavily doped p-n junction diode, specially made to

operate in the break down region. A p-n junction diode normally does not conduct

when reverse biased. But if the reverse bias is increased, at a particular voltage it

starts conducting heavily. This voltage is called Break down Voltage. High

current through the diode can permanently damage the device

 To avoid high current, we connect a resistor in series with zener

diode. Once the diode starts conducting it maintains almost constant voltage

across the terminals whatever may be the current through it, i.e., it has very low

dynamic resistance. It is used in voltage regulators.

E&E LAB ECE,MRCET

72

PROCEDURE :

1. Connections are made as per the circuit diagram.

2. The Regulated power supply voltage is increased in steps.

3. The Forward current (lf), and the forward voltage (Vf.) are observed and then

 noted in the tabular form.

4. A graph is plotted between Forward current (lf) on X-axis and the forward

voltage (Vf) on Y-axis.

CIRCUIT DIAGRAM :

A) FORWARD CHARACTERISTICS :

B) REVERSE CHARACTERISTICS:

E&E LAB ECE,MRCET

73

Model Graph:

PRECAUTIONS:

1. The terminals of the zener diode should be properly identified

2. While determined the load regulation, load should not be immediately shorted.

3. Should be ensured that the applied voltages & currents do not exceed the

ratings of the diode.

VIVAQUESTIONS:

1. What type of temp? Coefficient does the zener diode have?

2. If the impurity concentration is increased, how the depletion width effected?

3. Does the dynamic impendence of a zener diode vary?

4. Explain briefly about avalanche and zener breakdowns?

5. Draw the zener equivalent circuit?

6. Differentiate between line regulation & load regulation?

7. In which region zener diode can be used as a regulator?

E&E LAB ECE,MRCET

74

8. How the breakdown voltage of a particular diode can be controlled?

9. What type of temperature coefficient does the Avalanche breakdown has?

10. By what type of charge carriers the current flows in zener and avalanche

breakdown diodes?

OBSERVATIONS:

A) Static characteristics:

S.NO Applied Voltage(V) Forward Voltage (Vf) Forward Current If (mA)

E&E LAB ECE,MRCET

75

B) Reverse Characteristics:

S.NO Applied Voltage(V) Reverse Voltage(Vr) Reverse Current Ir (mA)

RESULT:

E&E LAB ECE,MRCET

76

9. HALF WAVE RECTIFIER WITH AND WITHOUT FILTERS

AIM: To examine the input and output waveforms of half wave Rectifier and

also calculate ripple factor.

 1. with Filter

 2. without Filter

APPARATUS:

 Digital Multimeter - 1No.

 Transformer (6V-0-6V) - 1No.

 Diode, 1N4007 - 1No.

 Capacitor 100μf/470 μf - 1No.

 Decade Resistance Box -1No.

 Breadboard

 CRO and CRO probes

 Connecting wires

THEORY:

In Half Wave Rectification, When AC supply is applied at the input, only

Positive Half Cycle appears across the load whereas, the negative Half Cycle is

suppressed. How this can be explained as follows:

 During positive half-cycle of the input voltage, the diode D1 is in forward

bias and conducts through the load resistor RL. Hence the current produces an

E&E LAB ECE,MRCET

77

output voltage across the load resistor RL, which has the same shape as the +ve half

cycle of the input voltage.

During the negative half-cycle of the input voltage, the diode is reverse

biased and there is no current through the circuit. i.e., the voltage across RL is

zero. The net result is that only the +ve half cycle of the input voltage appears

across the load. The average value of the half wave rectified o/p voltage is the

value measured on dc voltmeter.

For practical circuits, transformer coupling is usually provided for two reasons.

 1. The voltage can be stepped-up or stepped-down, as needed.

 2. The ac source is electrically isolated from the rectifier. Thus preventing

shock hazards in the secondary circuit. The efficiency of the Half Wave Rectifier

is 40.6%

CIRCUIT DIAGRAM:

A) Half wave Rectifier without filter:

E&E LAB ECE,MRCET

78

B) Half wave Rectifier with filter

PROCEDURE:

1. Connections are made as per the circuit diagram.

2. Connect the primary side of the transformer to ac mains and the secondary side

to the rectifier input.

3. By the multimeter, measure the ac input voltage of the rectifier and, ac and dc

voltage at the output of the rectifier.

 4. Find the theoretical of dc voltage by using the formula,

 Vdc=Vm/П

 Where, Vm=2Vrms, (Vrms=output ac voltage.)

5. The Ripple factor is calculated by using the formula r = ac output voltage/dc

output voltage.

E&E LAB ECE,MRCET

79

Theoretical calculations for Ripple factor:

Without Filter:

 Vrms=Vm/2

 Vm=2Vrms

 Vdc=Vm/П

 Ripple factor r=√ (Vrms/ Vdc)
2
-1 =1.21

With Filter:

 Ripple factor, r=1/ (2√3 f C R)

MODEL WAVEFORMS:

A) INPUT WAVEFORM

B) OUTPUT WAVFORM WITHOUT FILTER

C) OUTPUT WAVEFORM WITH FILTER:

E&E LAB ECE,MRCET

80

PRECAUTIONS:

1. The primary and secondary side of the transformer should be carefully

identified

2. The polarities of all the diodes should be carefully identified.

3. While determining the % regulation, first Full load should be applied and then

it should be decremented in steps.

VIVA QUESTIONS:

 1. What is the PIV of Half wave rectifier?

 2. What is the efficiency of half wave rectifier?

 3. What is the rectifier?

 4. What is the difference between the half wave rectifier and full wave

Rectifier?

 5. What is the o/p frequency of Bridge Rectifier?

 6. What are the ripples?

 7. What is the function of the filters?

 8. What is TUF?

 9. What is the average value of o/p voltage for HWR?

 10. What is the peak factor?

E&E LAB ECE,MRCET

81

10. FULL WAVE RECTIFIER WITH AND WITHOUT

FILTERS

AIM:

To Examine the input and output waveforms of Full Wave Rectifier and also

calculate its load regulation and ripple factor.

 1. with Filter

 2. without Filter

APPARATUS:

 Digital multimetersMultimeter - 1No.

 Transformer (6V-0-6V) - 1No.

 Diode, 1N4007 - 2No.

 Capacitor 100μf/470 μf - 1No.

 Decade Resistance Box -1No.

 Bread board

 CRO and CRO probes

 Connecting wires

THEORY:

 The circuit of a center-tapped full wave rectifier uses two diodes

D1&D2. During positive half cycle of secondary voltage (input voltage), the

diode D1 is forward biased and D2is reverse biased. So the diode D1 conducts

and current flows through load resistor RL.

 During negative half cycle, diode D2 becomes forward biased and D1

reverse biased. Now, D2 conducts and current flows through the load resistor RL

in the same direction. There is a continuous current flow through the load resistor

RL, during both the half cycles and will get unidirectional current as show in the

model graph. The difference between full wave and half wave rectification is that

a full wave rectifier allows unidirectional (one way) current to the load during the

entire 360 degrees of the input signal and half-wave rectifier allows this only

during one half cycle (180 degree).

E&E LAB ECE,MRCET

82

CIRCUIT DIAGRAM:

A) FULL WAVE RECTIFIER WITHOUT FILTER:

B) FULL WAVE RECTIFIER WITH FILTER:

E&E LAB ECE,MRCET

83

PROCEDURE:

1. Connections are made as per the circuit diagram.

2. Connect the ac mains to the primary side of the transformer and the

secondary side to the rectifier.

3. Measure the ac voltage at the input side of the rectifier.

4. Measure both ac and dc voltages at the output side the rectifier.

5. Find the theoretical value of the dc voltage by using the formula

Vdc=2Vm/П

6. Connect the filter capacitor across the load resistor and measure the values

of Vac and Vdc at the output.

7. The theoretical values of Ripple factors with and without capacitor are

calculated.

8. From the values of Vac and Vdc practical values of Ripple factors are

calculated. The practical values are compared with theoretical values.

THEORITICAL CALCULATIONS:

 Vrms = Vm/ √2

 Vm =Vrms√2

 Vdc=2Vm/П

(i)Without filter:

 Ripple factor, r = √ (Vrms/ Vdc)
2
-1 = 0.812

(ii)With filter:

 Ripple factor, r = 1/ (4√3 f C RL)

E&E LAB ECE,MRCET

84

MODEL WAVEFORMS:

A) INPUT WAVEFORM

B) OUTPUT WAVEFORM WITHOUT FILTER:

C) OUTPUT WAVEFORM WITHOUT FILTER:

E&E LAB ECE,MRCET

85

PRECAUTIONS:

1. The primary and secondary side of the transformer should be carefully

identified.

2. The polarities of all the diodes should be carefully identified.

VIVA QUESTIONS:

1. Define regulation of the full wave rectifier?

2. Define peak inverse voltage (PIV)? And write its value for Full-wave

rectifier?

3. If one of the diode is changed in its polarities what wave form would you

get?

4. Does the process of rectification alter the frequency of the waveform?

5. What is ripple factor of the Full-wave rectifier?

6. What is the necessity of the transformer in the rectifier circuit?

7. What are the applications of a rectifier?

8. What is meant by ripple and define Ripple factor?

9. Explain how capacitor helps to improve the ripple factor?

10. Can a rectifier made in INDIA (V=230v, f=50Hz) be used in USA (V=110v,

f=60Hz)?

RESULT

E&E LAB ECE,MRCET

86

12.INPUT AND OUTPUT CHARACTERISTICS OF TRANSISTOR IN CE

CONFIGARATION

AIM:

1. To draw the input and output characteristics of transistor connected in

 CE configuration

2. To find β of the given transistor and also its input and output Resistances

APPARATUS:

 Transistor, BC107 -1No.

 Regulated power supply (0-30V) -1No.

 Voltmeter (0-20V) - 2No.

 Ammeters (0-20mA) -1No.

 Ammeters (0-200μA) -1No.

 Resistor- 100Ω -1No

 Resistor-1KΩ -1No.

 Bread board

 Connecting wires

THEORY:

In common emitter configuration, input voltage is applied between base and

emitter terminals and out put is taken across the collector and emitter terminals.

Therefore the emitter terminal is common to both input and output.

 The input characteristics resemble that of a forward biased diode curve.

This is expected since the Base-Emitter junction of the transistor is forward

biased. As compared to CB arrangement IB increases less rapidly with VBE.

Therefore input resistance of CE circuit is higher than that of CB circuit.

E&E LAB ECE,MRCET

87

 The output characteristics are drawn between Ic and VCE at constant IB. the

collector current varies with VCE upto few volts only. After this the collector

current becomes almost constant, and independent of VCE. The value of VCE up to

which the collector current changes with V CE is known as Knee voltage. The

transistor always operated in the region above Knee voltage, IC is always constant

and is approximately equal to IB.The current amplification factor of CE

configuration is given by

 β = ΔIC/ΔIB

Input Resistance, ri = ∆VBE /∆IB (μA) at Constant VCE

 Output Résistance, ro = ∆VCE /∆IC at Constant IB (μA)

CIRCUIT DIAGRAM:

E&E LAB ECE,MRCET

88

MODEL GRAPHS:

A) INPUT CHARACTERISTICS:

B) OUTPUT CHARACTERSITICS:

E&E LAB ECE,MRCET

89

PROCEDURE:

A) INPUT CHARECTERSTICS:

1. Connect the circuit as per the circuit diagram.

2. For plotting the input characteristics the output voltage VCE is kept constant

at 1V and for different values of VBB , note down the values of IB and VBE

3. Repeat the above step by keeping VCE at 2V and 4V and tabulate all the

readings.

4. plot the graph between VBE and IB for constant VCE

B) OUTPUT CHARACTERSTICS:

1. Connect the circuit as per the circuit diagram

2. for plotting the output characteristics the input current IB is kept constant

at 50μA and for different values of VCC note down the values of IC and VCE

3. Repeat the above step by keeping IB at 75 μA and 100 μA and tabulate the

all the readings

4. plot the graph between VCE and IC for constant IB

PRECAUTIONS:

 1. The supply voltage should not exceed the rating of the transistor

 2. Meters should be connected properly according to their polarities

E&E LAB ECE,MRCET

90

VIVA QUESTIONS:

1. What is the range of β for the transistor?

2. What are the input and output impedances of CE configuration?

3. Identify various regions in the output characteristics?

4. What is the relation between α and β?

5. Define current gain in CE configuration?

OBSERVATIONS:

A) INPUT CHARACTERISTICS:

VBB

VCE = 1V VCE = 2V VCE = 4V

VBE(V) IB(μA) VBE(V) IB(μA) VBE(V) IB(μA)

E&E LAB ECE,MRCET

91

 B) OUTPUT CHAREACTARISTICS:

S.NO

IB = 50 μA IB = 75 μA IB = 100 μA

VCE(V) IC(mA) VCE(V) IC(mA) VCE(V) IC(mA)

RESULT:

E&E LAB ECE,MRCET

92

Input & Output Characteristics of CB Configuration

Aim:

To study the input and output characteristics of a transistor in Common Base

Configuration.

Components:

S.No. Name Quantity

1 Transistor BC 107 1(One) No.

2 Resistors (1K) 2(Two) No.

3 Bread board 1(One) No.

Equipment

S.No. Name Quantity

1 Dual DC Regulated Power supply (0 – 30 V) 1(One) No.

2 Digital Ammeters (0 – 200 mA) 2(Two) No.

3 Digital Voltmeter (0-20V) 2(Two) No.

4 Connecting wires (Single Strand) 2

E&E LAB ECE,MRCET

93

Specifications:

For Transistor BC 107:

 Max Collector Current = 0.1A

 Vceo max = 50V

Circuit Diagram:

Pin assignment of Transistor:

View from side of pins

E&E LAB ECE,MRCET

94

View from top of casing

Operation:

Bipolar Junction Transistor (BJT) is a three terminal (emitter, base,

collector) semiconductor device. There are two types of BJTs, namely NPN and

PNP. It consists of two PN junctions, namely emitter junction and collector

junction.

The basic circuit diagram for studying input characteristics is shown in the

circuit diagram. The input is applied between emitter and base, the output is taken

between collector and base. Here base of the transistor is common to both input

and output and hence the name is Common Base Configuration.

Input characteristics are obtained between the input current and input

voltage at constant output voltage. It is plotted between VEE and IE at

constant VCB in CB configuration.

Output characteristics are obtained between the output voltage and output

current at constant input current. It is plotted between VCB and IC at constant IE in

CB configuration.

E&E LAB ECE,MRCET

95

Procedure:

Input Characteristics:

1. Connect the circuit as shown in the circuit diagram.

2. Keep output voltage VCB = 0V by varying VCC.

3. Varying VEE gradually, note down emitter current IE and emitter-base

voltage(VEE).

4. Step size is not fixed because of nonlinear curve. Initially vary VEE in steps

of 0.1 V. Once the current starts increasing vary VEE in steps of 1V up to

12V.

5. Repeat above procedure (step 3) for VCB = 4V.

Output Characteristics:

1. Connect the circuit as shown in the circuit diagram.

2. Keep emitter current IE = 5mA by varying VEE.

3. Varying VCC gradually in steps of 1V up to 12V and note down collector

current IC and collector-base voltage(VCB).

4. Repeat above procedure (step 3) for IE = 10mA.

Repeat above procedure (step 3) for IE = 10mA.

E&E LAB ECE,MRCET

96

Observations:

Input Characteristics

VEE (Volts) VCB = 0V VCB = 4V

VEB (Volts) IE (mA) VEB (Volts) IE (mA)

Output Characteristics

VCC (Volts) IE = 0mA IE = 5V IE = 10mA

VCB (Volts) IC (mA) VCB (Volts) IC (mA) VCB (Volts) IC (mA)

E&E LAB ECE,MRCET

97

Graph:

1. Plot the input characteristics for different values of VCB by taking VEE on X-

axis and IE on Y-axis taking VCB as constant parameter.

2. Plot the output characteristics by taking VCB on X-axis and taking IC on Y-

axis taking IE as a constant parameter.

Calculations from Graph:

The h-parameters are to be calculated from the following formulae:

1. Input Characteristics: To obtain input resistance, find VEE and IE for a

constant VCB on one of the input characteristics.

Input impedance = hib = Ri = VEE / IE (VCB = constant)

Reverse voltage gain = hrb = VEB / VCB (IE = constant)

2. Output Characteristics: To obtain output resistance, find IC and

VCB at a constant IE.

Output admitance = hob = 1/Ro = IC / VCB (IE = constant)

Forward current gain = hfb = IC / IE (VCB = constant)

E&E LAB ECE,MRCET

98

Inference:

1. Input resistance is in the order of tens of ohms since Emitter-Base Junction

is forward biased.

2. Output resistance is in order of hundreds of kilo-ohms since Collector-Base

Junction is reverse biased.

3. Higher is the value of VCB, smaller is the cut in voltage.

4. Increase in the value of IB causes saturation of transistor at small voltages.

Precautions:

1. While performing the experiment do not exceed the ratings of the transistor.

This may lead to damage the transistor.

2. Connect voltmeter and ammeter in correct polarities as shown in the circuit

diagram.

3. Do not switch ON the power supply unless you have checked the circuit

connections as per the circuit diagram.

4. Make sure while selecting the emitter, base and collector terminals of the

transistor.

Result:

E&E LAB ECE,MRCET

99

Discussion/Viva Questions:

1. What is transistor?

Ans: A transistor is a semiconductor device used to amplify and switch electronic

signals and electrical power. It is composed of semiconductor material with at least

three terminals for connection to an external circuit. The term transistor was coined

by John R. Pierce as a portmanteau of the term "transfer resistor".

2. Write the relation between and ?

Ans:

3. Define (alpha)? What is the range of ?

Ans: The important parameter is the common-base current gain, . The common-

base current gain is approximately the gain of current from emitter to collector in

the forward-active region. This ratio usually has a value close to unity; between

0.98 and 0.998.

4. Why is less than unity?

Ans: It is less than unity due to recombination of charge carriers as they cross the

base region.

	DATA STRUCTURES USING C++
	&
	ELECTRICAL AND ELECTRONICS
	LABORATORY MANUAL
	B.TECH (II YEAR – I SEM)
	(2017-18)
	DATA STRUCTURES USING C++ (1)
	LABORATORY MANUAL (1)
	B.TECH (II YEAR – I SEM) (1)
	(2017-18) (1)
	Vision:
	Mission:
	List ADT
	Source code:To Implement LIST ADT in C++
	#include<stdlib.h>
	#include<iostream.h>
	#include<conio.h>
	class node
	{
	public:
	int data;
	node *next;
	};
	class List
	{ (1)
	int item;
	node *head;
	public: List();
	void insert_front();
	void insert_end();
	void delete_front();
	void delete_end();
	void display();
	int node_count();
	void delete_before_pos();
	void delete_after_pos();
	}; (1)
	List::List()
	{ (2)
	head=NULL;
	}
	//code to insert an item at front List;
	void List::insert_front()
	{ (3)
	node *p;
	cout<<"Enter an element to be inserted:";
	cin>>item;
	p=new node;
	p->data=item;
	p->next=NULL;
	if(head==NULL)
	{ (4)
	head=p;
	} (1)
	else
	{ p->next=head;
	head=p; (1)
	} (2)
	cout<<"\nInserted at front of Linked List Sucesfully....\n";
	} (3)
	//code to insert an item at end List
	void List::insert_end()
	{ (5)
	node *p; (1)
	cout<<"Enter an element to be inserted:"; (1)
	cin>>item; (1)
	p=new node; (1)
	p->data=item; (1)
	p->next=NULL; (1)
	if(head==NULL) (1)
	{ (6)
	head=p; (2)
	} (4)
	else (1)
	{ (7)
	node*t;
	t=head;
	while(t->next!=NULL)
	t=t->next;
	t->next=p;
	} (5)
	cout<<"\nInserted an element at end of Linked List Sucesfully....\n";
	} (6)
	void List::delete_front()
	{ (8)
	node*t; (1)
	if(head==NULL) (2)
	cout<<"\nList is Underflow";
	else (2)
	{ item=head->data;
	t=head; (1)
	head=head->next;
	cout<<"\n"<<item<<" is deleted Sucesfully from List....\n";
	delete(t);
	} (7)
	} (8)
	void List::delete_end()
	{ (9)
	node*t,*prev;
	if(head==NULL) (3)
	cout<<"\nList is Underflow"; (1)
	else (3)
	{ (10)
	t=head; (2)
	if(head->next==NULL)
	{ (11)
	cout<<"\n"<<t->data<<" is deleted Sucesfully from List....\n";
	delete(t); (1)
	head=NULL; (1)
	} (9)
	else (4)
	{ (12)
	while(t->next!=NULL) (1)
	{ (13)
	prev=t;
	t=t->next; (1)
	} (10)
	prev->next=NULL;
	cout<<"\n"<<t->data<<" is deleted Sucesfully from List....\n"; (1)
	delete(t); (2)
	} (11)
	} (12)
	} (13)
	//Delete a node before a position
	void List::delete_before_pos()
	{ (14)
	int i=1;
	int pos;
	node*t,*prev; (1)
	if(head==NULL) (4)
	cout<<"\nList is Underflow"; (2)
	else (5)
	{ cout<<"Enter position at which node has to be deleted:";
	cin>>pos;
	t=head; (3)
	int nc=node_count();
	if(pos>nc||pos<=0)
	cout<<"invalid position ...try again\n";
	else (6)
	{ (15)
	cout<<"Before Deletion elements in the List are..\n";
	display();
	while(i<pos)
	{ (16)
	prev=t; (1)
	t=t->next; (2)
	i++;
	} (14)
	if(i==1)
	{ (17)
	cout<<"\n"<<t->data<<" is deleted Sucesfully from List....\n"; (2)
	if(head->next==NULL) (1)
	head=NULL; (2)
	else (7)
	{ (18)
	t=head; (4)
	head=head->next; (1)
	cout<<"\n"<<t->data<<"is deleted Sucesfully from List....\n"; delete(t);
	} (15)
	} (16)
	else (8)
	{ (19)
	prev->next=t->next;
	cout<<"\n"<<t->data<<" is deleted Sucesfully from List....\n"; (3)
	delete(t); (3)
	} (17)
	cout<<"After Deletion elements in the List are..\n";
	display(); (1)
	} (18)
	} (19)
	} (20)
	//Delete a node after a position
	void List::delete_after_pos()
	{ (20)
	int i=1; (1)
	int pos; (1)
	node*t,*prev; (2)
	if(head==NULL) (5)
	cout<<"\nList is Underflow"; (3)
	else (9)
	{ cout<<"Enter position at which node has to be deleted:";
	cin>>pos; (1)
	t=head; (5)
	int nc=node_count(); (1)
	if(pos>nc||pos<=0) (1)
	cout<<"invalid position ...try again\n"; (1)
	else (10)
	{ (21)
	cout<<"Before Deletion elements in the List are..\n"; (1)
	display(); (2)
	while(i<pos) (1)
	{ (22)
	prev=t; (2)
	t=t->next; (3)
	i++; (1)
	} (21)
	if(i==1) (1)
	{ (23)
	cout<<"\n"<<t->data<<" is deleted Sucesfully from List....\n"; (4)
	if(head->next==NULL) (2)
	head=NULL; (3)
	else (11)
	{ (24)
	t=head; (6)
	head=head->next; (2)
	cout<<"\n"<<t->data<<" is deleted Sucesfully from List....\n"; (5)
	delete(t); (4)
	} (22)
	} (23)
	else (12)
	{ (25)
	prev->next=t->next; (1)
	cout<<"\n"<<t->data<<" is deleted Sucesfully from List....\n"; (6)
	delete(t); (5)
	} (24)
	cout<<"After Deletion elements in the List are..\n"; (1)
	display(); (3)
	} (25)
	} (26)
	} (27)
	void List::display()
	{ (26)
	node*t; (2)
	if(head==NULL) (6)
	cout<<"\nList Under Flow";
	else (13)
	{ (27)
	cout<<"\nElements in the List are....\n";
	t=head; (7)
	while(t!=NULL)
	{ (28)
	cout<<"|"<<t->data<<"|->";
	t=t->next; (4)
	} (28)
	} (29)
	} (30)
	//code to count no of nodes
	int List::node_count()
	{ (29)
	int nc=0;
	node*t; (3)
	if(head==NULL) (7)
	{ (30)
	cout<<"\nList Under Flow"<<endl;
	// cout<<"No Nodes in the Linked List are: "<<nc<<endl;
	} (31)
	else (14)
	{ (31)
	t=head; (8)
	while(t!=NULL) (1)
	{ (32)
	nc++;
	t=t->next; (5)
	} (32)
	// cout<<"No Nodes in the Linked List are: "<<nc<<endl;
	} (33)
	return nc;
	} (34)
	int main()
	{ (33)
	int choice;
	List LL;
	while(1)
	{ (34)
	cout<<"\n\n***Menu for Linked List operations***\n\n";
	cout<<"1.Insert Front\n2.Insert end\n3.Delete front\n4.Delete End\n5.DISPLAY\n";
	cout<<"6.Node Count\n7.Del before a position\n8.Del after position\n";
	cout<<"9.Clear Scrn\n10.Exit\nEnter Choice:";
	cin>>choice;
	switch(choice)
	{ (35)
	case 1: LL.insert_front();
	break;
	case 2: LL.insert_end();
	break; (1)
	case 3: LL.delete_front();
	break; (2)
	case 4: LL.delete_end();
	break; (3)
	case 5: LL.display();
	break; (4)
	case 6:cout<<"No of nodes in List:"<<LL.node_count();
	break; (5)
	case 7:LL.delete_before_pos();
	break; (6)
	case 8:LL.delete_after_pos();
	break; (7)
	case 9:clrscr();
	break; (8)
	case 10:exit(0);
	default:cout<<"Invalid choice...Try again...\n";
	} (35)
	} (36)
	} (37)

